
Apache UIMA ConceptMapper
Annotator Documentation

Written and maintained by the Apache UIMA Development Community

Version 2.3.1

Copyright © 2006, 2011 The Apache Software Foundation

License and Disclaimer. The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such terms in this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date August, 2011

http://www.apache.org/licenses/LICENSE-2.0

Apache UIMA ConceptMapper Annotator Documentation iii

Table of Contents
Introduction .. v
1. Using ConceptMapper ... 1
2. Functionality ... 3

2.1. Dictionaries .. 3
2.2. Dictionary Entry Tokenization .. 4
2.3. Input Document Processing .. 4
2.4. Lookup Strategies ... 5
2.5. Output Options ... 6

3. Configuration Parameters ... 9

Introduction v

Introduction
ConceptMapper is a highly configurable, high performance dictionary lookup tool, implemented as
a UIMA (Unstructured Information Management Architecture) component. Using one of several
matching algorithms, it maps entries in a dictionary onto input documents, producing UIMA
annotations.

Using ConceptMapper 1

Chapter 1. Using ConceptMapper
ConceptMapper was designed to provide highly accurate mappings of text into controlled
vocabularies, specified as dictionaries, including the association of any necessary properties from
the controlled vocabulary as part of that mapping. Individual dictionary entries could contain
multiple terms (tokens), and ConceptMapper can be configured to allow multi-term entries to be
matched against non-contiguous text. It was also designed to perform fast, and has been easily able
to provide real-time results even with multi-million entry dictionaries.

Lookups are token-based, and are limited to applying within a specific context, usually a sentence,
though this is configurable (e.g., a noun phrase, a paragraph or other NLP-based concept).

Functionality 3

Chapter 2. Functionality
There are many parameters to configure all aspects of ConceptMapper's functionality, in terms of:

• processing the dictionary

• the way input documents are processed

• the availability of multiple lookup strategies

• its various output options

2.1. Dictionaries
The requirements on the design of the ConceptMapper dictionary were that it be easily extensible
and that arbitrary properties could be associated with individual entries. Additionally, the set of
properties could not be fixed, but rather customizable for any particular application.

The structure of a ConceptMapper dictionary is quite flexible and is expressed using XML (see
Example 2.1, “Sample dictionary entry” [3]). Specifically, it consists of a set of entries,
specified by the <token> XML tag, each containing one or more variants (synonyms), the text
of which is specified using by the "base" feature of the <variant> XML tag. Entries can have
any number of associated properties, as needed. Individual variants (synonyms) inherit features
from their parent token (i.e., the canonical form), but can override any or all of them, or even add
additional features.

In the following sample dictionary entry, there are 6 variants, and according to the rules described
earlier, each inherits the all attributes from the canonical form (canonical, CodeType, CodeValue,
and SemClass), though the variants “colonic” and “colic” override the value of the POS (part of
speech) attribute:

 <token canonical="colon, nos"
 CodeType="ICDO" CodeValue="C18.9"
 SemClass="Site" POS="NN">
 <variant base=”colon, nos”/>
 <variant base=”colon”/>
 <variant base="colonic" POS="JJ" />
 <variant base="colic" POS="JJ" />
 <variant base="large intestine" />
 <variant base="large bowel" />
 </token>

Example 2.1. Sample dictionary entry

The result of running ConceptMapper are UIMA annotations, and there are two configuration
parameters that are used to map the attributes from the dictionary (see AttributeList [9]) to
features of UIMA annotations (see FeatureList [9]).

The entire dictionary is loaded into memory, which, in conjunction with an efficient data
structure, provides very fast lookups. As stated earlier, dictionaries with millions of entries
have been used without any performance issues. The obvious drawback to storing the
dictionary in memory is that large dictionaries require large amounts of memory; this
is partially mitigated by the fact that the dictionary is implemented as a UIMA shared
resource (see DictionaryFile [11]). This means that multiple annotators, such as

Dictionary Entry Tokenization

4 Functionality UIMA Version 2.3.1

multiple instances of ConceptMapper that are set up using different parameters, can all
access it without having to load it more than once. The dictionary loader is specified in
the external resource section of the descriptor, and is expected to implement the interface
org.apache.uima.conceptMapper.support.dictionaryResource.DictionaryResource.
Two implementations are included in the distribution,
org.apache.uima.conceptMapper.support.dictionaryResource.DictionaryResource_impl,
the standard implementation, which loads an XML version of a dictionary, and
org.apache.uima.conceptMapper.support.dictionaryResource.CompiledDictionaryResource_impl
which loads a pre-compiled version, for faster loading. The compiler is supplied as
org.apache.uima.conceptMapper.dictionaryCompiler.CompileDictionary, which
takes two arguments, a ConceptMapper analysis engine descriptor that loads the dictionary using
the standard dictionary loader, and the name of the output file into which to write the compiled
dictionary.

2.2. Dictionary Entry Tokenization
Input documents are processed on a token-by-token basis, so it is important that the dictionary
entries are tokenized in the same way as the input documents. To accomplish this, ConceptMapper
allows any UIMA analysis engine to be specified as the tokenizer for the dictionary entries. See
parameter TokenizerDescriptorPath [9] for details.

2.3. Input Document Processing
As stated earlier, input documents are processed on a token-by-token basis. Tokens are processed
one span (e.g., a sentence or a noun phrase) at a time. Token annotations are specified by the
parameter TokenAnnotation [9], while span annotations are specified by the parameter
SpanFeatureStructure [9]. By default, all tokens within a span are considered, and it is the
text associated with each token that is used for lookups. ConceptMapper can also be configured to
consider tokens differently:

• Case sensitive or insensitive matching. See the parameter caseMatch [9]

• Stop words: ignore token during lookup if it appears in given stop word list. See the
parameter StopWords [9]

• Stemming: a stemmer can be specified to be applied to the text of the token. In practice,
the stemmer could be a standard stemmer providing the root form of the token, or it could
perform other functions, such as abbreviation expansion or spelling variant replacement. See
the parameter Stemmer [9]

• Use a token feature instead of the token's text. This is useful for cases where, for example,
spelling or case correction results need to be applied instead of the token’s original text. See
the parameter TokenTextFeatureName [9]

• skip tokens during lookups based on particular feature values, as described below

The ability to skip tokens during lookups based on particular feature values makes it easy to skip,
for example, all tokens with particular part of speech tags, or with some previously computed
semantic class. For example, given the text below in Example 2.2, “Sample Input Text” [4]:

 Infiltrating mammary carcinoma

Example 2.2. Sample Input Text

Lookup Strategies

UIMA Version 2.3.1 Functionality 5

Assume each word is a token that has a feature SemanticClass, and that feature for the token
“mammary” contains the value “AnatomicalSite”, while the tokens “Infiltrating” and “carcinoma”
do not. It is then possible to configure ConceptMapper to indicate that tokens that have a
particular feature, in this case SemanticClass, equal to one of a set of values, in this case
“AnatomicalSite”, should be excluded when performing dictionary lookups (see parameters
ExcludedTokenClasses [10] and ExcludedTokenTypes [10]). By doing this, for the
purposes of dictionary lookup, the example text would effectively appear to be:

 Infiltrating carcinoma

Example 2.3. Result of Token Skipping

In addition to the set of feature values that indicate their associated token are to be excluded during
lookup, there are also configuration parameters that can be used to specify a set of feature values
for inclusion (see parameters IncludedTokenClasses [10] and IncludedTokenTypes [10]).
The algorithm for selecting annotations to include during lookup is as follows:

 if there is an includeList but no excludeList
 include annotation if feature value in includeList

 else if there is an excludeList
 exclude annotation if feature value in excludeList

 else
 include annotation

Example 2.4. Token Selection Algorithm

This provides a simple way to restrict the selection of pre-classified tokens, whether that pre-
classification is done via previous instances of ConceptMapper or some altogether different
annotator. See TokenTextFeatureName [9]

2.4. Lookup Strategies
The actual dictionary lookup algorithm is controlled by three parameters. One specifies token-
order independent lookup (OrderIndependentLookup [10]). For example, a dictionary entry that
contained the variant:

 <variant base='carcinoma, infiltrating'/>

would also match against any permutation of its tokens. In this case, assuming that punctuation was
ignored, it would match against both “infiltrating carcinoma” and “carcinoma, infiltrating”. Clearly,
this particular setting must be used with care to prevent incorrect matches from being found, but for
some domains it enables the use of a more compact dictionary, as all permutations of a particular
entry do not need to be enumerated.

Another parameter that controls the dictionary lookup algorithm toggles between finding only the
longest match vs. finding all possible matches (FindAllMatches [11]). For the text:

 ... carcinoma, infiltrating ...

Output Options

6 Functionality UIMA Version 2.3.1

If there was a dictionary entry for “carcinoma” as well as the entry for “carcinoma, infiltrating”,
this parameter would control whether only the latter was annotated as a result or both would be
annotated. Using the setting that indicates all possible matches should be found is useful when
subsequent disambiguation is required.

The final parameter that controls the dictionary lookup algorithm specifies the search strategy
(SearchStrategy [10]), of which there are three. The default search strategy only considers
contiguous tokens (not including tokens from the stop word list or otherwise skipped tokens,
as described above), and then begins the subsequent search after the longest match. The second
strategy allows for ignoring non-matching tokens, allowing for disjoint matches, so that a
dictionary entry of

 A C

would match against the text

 A B C

This can be used as alternative method for finding “infiltrating carcinoma” over the text
“infiltrating mammary carcinoma”, as opposed to the method described above, wherein the token
“mammary” had to have been have been somehow pre-marked with a feature and that feature
listed as indicating the token should be skipped. On the other hand, this approach is less precise,
potentially finding completely disjoint and unrelated tokens as a dictionary match. As with the
default search strategy, the subsequent search begins after the longest match.

The final search strategy is identical to the previous, except that subsequent searches begin one
token ahead, instead of after the previous match. This enables overlapped matching. As with
the setting that finds all matches instead of the longest match, using this setting is useful when
subsequent disambiguation is required.

2.5. Output Options
Output is in the form of new UIMA annotations. As previously discussed, the mapping from
dictionary entry attributes to the result annotation features can also be specified. Given the fact that
dictionary entries can have multiple variants, and that matches could contain non-contiguous sets
of tokens, it can be useful to be able to be able to know exactly what was matched. There are two
parameters that can be used to provide this information. One allows the specification of a feature
in the output annotation that will be set to the string containing the matched text. The other can be
used to indicate a feature to be filled with the list of tokens that were matched. Going back to the
example in figure 2, where the token “mammary” was skipped, the matched string would be set to
“Infiltrating carcinoma” and the matched tokens would be set to the list of tokens “Infiltrating” and
“carcinoma”.

Another output control AE descriptor parameter can be used to specify a feature of the resultant
annotation to be set to contain the span annotation enclosing the matched token. Assuming, for
example, that the spans being processed are sentences, this provides a convenient way to link the
resultant annotation back to its enclosing sentence.

It is also possible to indicate dictionary attributes to store back into each of the matched tokens.
This provides the ability for tokens to be marked with information regarding what it was matched
against. Going back to the example in figure 2, one way that the SemanticClass feature of the token

Output Options

UIMA Version 2.3.1 Functionality 7

“mammary” could have been labeled with the value “AnatomicalSite” was using this technique:
a previous invocation of ConceptMapper had “mammary” as a dictionary entry, that entry had
the SemanticClass feature with the value “AnatomicalSite”, and SemanticClass was listed as an
attribute to write back as a token feature. If, instead of “mammary” the match was against a multi-
token entry, then each of the multiple tokens would have that feature set.

Configuration Parameters 9

Chapter 3. Configuration Parameters
Detailed description of all configuration parameters:

• TokenizerDescriptorPath: [Required] String

Path to tokenizer Analysis Engine descriptor, which is used to tokenize dictionary entries.

• LanguageID: [Required] String

Language ID (ISO 639-2), for use by the tokenizer specified by
TokenizerDescriptorPath [9].

• TokenAnnotation: [Required] String

Type of feature structure representing tokens in the input CAS.

• SpanFeatureStructure: [Required] String

Type of feature structure that corresponds to spans of data for processing (e.g. a sentence) in
the input CAS.

• AttributeList: [Required] Array of Strings

List of attribute names for XML dictionary entry record. Must correspond to parallel list
FeatureList [9].

• FeatureList: [Required] Array of Strings

List of feature names for ResultingAnnotationName [11]. Must correspond to parallel
list AttributeList [9].

• caseMatch: [Required] String

Specifies the case folding mode. The following are the allowable values:

• ignoreall - fold everything to lowercase for matching

• insensitive - fold only tokens with initial caps to lowercase

• digitfold - fold all (and only) tokens with a digit

• sensitive - perform no case folding

• StopWords: [Optional] Array of Strings

A list of words that are always to be ignored in dictionary lookups.

• Stemmer: [Optional] String

Name of stemmer class to use before matching. Must implement the
org.apache.uima.conceptMapper.support.stemmer interface and have a zero-
parameter constructor. If not specified, no stemming will be performed.

• TokenTextFeatureName: [Optional] String

10 Configuration Parameters UIMA Version 2.3.1

Name of feature of token annotation that contains the token's text. If not specified, the
token's covered text will be used.

• TokenClassFeatureName: [Optional] String

Name of feature used when doing lookups against IncludedTokenClasses [10]
and ExcludedTokenClasses [10]. Values contained in this feature are of type
String. This parameter is mandatory if either IncludedTokenClasses [10] or
ExcludedTokenClasses [10] are specified. See Example 2.4, “Token Selection
Algorithm” [5] for a description of how these are used during lookup.

• TokenTypeFeatureName: [Optional] String

Name of feature used when doing lookups against IncludedTokenTypes [10]
and ExcludedTokenTypes [10]. Values contained in this feature are of type
Integer. This parameter is mandatory if either IncludedTokenTypes [10] or
ExcludedTokenTypes [10] are specified See Example 2.4, “Token Selection
Algorithm” [5] for a description of how these are used during lookup.

• IncludedTokenTypes: [Optional] Array of Integers

Type of tokens to include in lookups (if not supplied, then all types are included except those
specifically mentioned in ExcludedTokenTypes [10])

• ExcludedTokenTypes: [Optional] Array of Integers

Type of tokens to exclude from lookups (if not supplied, then all types are excluded
except those specifically mentioned in IncludedTokenTypes [10], unless
IncludedTokenTypes [10] is not supplied, in which case none are excluded)

• IncludedTokenClasses: [Optional] Array of Strings

Class of tokens to include in lookups (if not supplied, then all classes are included except
those specifically mentioned in ExcludedTokenClasses [10])

• ExcludedTokenClasses: [Optional] Array of Strings

Class of tokens to exclude from lookups (if not supplied, then all classes are excluded
except those specifically mentioned in IncludedTokenClasses [10], unless
IncludedTokenClasses [10] is not supplied, in which case none are excluded).

• OrderIndependentLookup: [Optional] Boolean

If "True", token (as specified by TokenAnnotation [9]) ordering within span (as
specified by SpanFeatureStructure [9]) is ignored during lookup (i.e., "top box" would
equal "box top"). Default is False.

• SearchStrategy: [Optional] String

Specifies the dictionary lookup strategy. The following are the allowable values:

• ContiguousMatch - longest match of contiguous tokens (as specified
by TokenAnnotation [9]) within enclosing span (as specified by
SpanFeatureStructure [9]), taking into account included/excluded
items (see IncludedTokenTypes [10], ExcludedTokenTypes [10],

UIMA Version 2.3.1 Configuration Parameters 11

IncludedTokenClasses [10] and ExcludedTokenClasses [10]). DEFAULT
strategy

• SkipAnyMatch - longest match of not-necessarily contiguous tokens (as
specified by TokenAnnotation [9]) within enclosing span (as specified
by SpanFeatureStructure [9]), taking into account included/excluded
items (see IncludedTokenTypes [10], ExcludedTokenTypes [10],
IncludedTokenClasses [10] and ExcludedTokenClasses [10]). Subsequent
lookups begin in span after complete match. Implies order-independent lookup (see
OrderIndependentLookup [10]).

• SkipAnyMatchAllowOverlap - longest match of not-necessarily contiguous
tokens (as specified by TokenAnnotation [9]) within enclosing span,
(as specified by SpanFeatureStructure [9]) taking into account included/
excluded items (see IncludedTokenTypes [10], ExcludedTokenTypes [10],
IncludedTokenClasses [10] and ExcludedTokenClasses [10]). Subsequent
lookups begin in span after next token. Implies order-independent lookup (see
OrderIndependentLookup [10]).

• FindAllMatches: [Optional] Boolean

If True, all dictionary matches are found within the span specified by
SpanFeatureStructure [9], otherwise only the longest matches are found.

• ResultingAnnotationName: [Optional] String

Name of the annotation type created by this TAE.

• ResultingEnclosingSpanName: [Optional] String

Name of the feature in the ResultingAnnotationName [11] that will be set to point to the
span annotation that encloses it (i.e. its sentence)

• ResultingAnnotationMatchedTextFeature: [Optional] String

Name of the feature in the ResultingAnnotationName [11] that will be set to the string
that was matched in the dictionary. This could be different that the annotation's covered text
if there were any skipped tokens in the match.

• MatchedTokensFeatureName: [Optional] String

Name of the FSArray feature in the ResultingAnnotationName [11] that will set to the
set of tokens matched.

• TokenClassWriteBackFeatureNames: [Optional] Array of Strings

Names of features in the ResultingAnnotationName [11] that should be written back to a
token from the matching dictionary entry, such as a POS tag.

• PrintDictionary: [Optional] Boolean

If True, print dictionary after loading. Default is False.

• DictionaryFile: [Dictionary Resource] Boolean

Dictionary file resource specification. Specify class name for dictionary loader, then bind to
name of file containing dictionary contents to be loaded.

	Apache UIMA ConceptMapper Annotator Documentation
	Table of Contents
	Introduction
	Chapter 1. Using ConceptMapper
	Chapter 2. Functionality
	2.1. Dictionaries
	2.2. Dictionary Entry Tokenization
	2.3. Input Document Processing
	2.4. Lookup Strategies
	2.5. Output Options

	Chapter 3. Configuration Parameters

