GCL TK Manual

Chapter 1: General 3

1 General

1.1 Introduction

GCL-TK is a windowing interface for GNU Common Lisp. It provides the functionality of
the TK widget set, which in turn implements a widget set which has the look and feel of
Motif.

The interface allows the user to draw graphics, get input from menus, make regions
mouse sensitive, and bind lisp commands to regions. It communicates over a socket with a
gcltksrv process, which speaks to the display via the TK library. The displaying process
may run on a machine which is closer to the display, and so involves less communication.
It also may remain active even though the lisp is involved in a separate user computation.
The display server can, however, interrupt the lisp at will, to inquire about variables and
run commands.

The user may also interface with existing TCL/TK programs, binding some buttons, or
tracking some objects.

The size of the program is moderate. In its current form it adds only about 45K bytes
to the lisp image, and the gcltksrv program uses shared libraries, and is on the order of
150Kbytes on a sparc.

This chapter describes some of the common features of the command structure of widgets,
and of control functions. The actual functions for construction of windows are discussed
in (undefined) [Widgets|, page (undefined), and more general functions for making them
appear, lowering them, querying about them in (undefined) [Control], page (undefined).

1.2 Getting Started

Once GCL has been properly installed you should be able to do the following simple example:
(in-package "TK")
(tkconnect)
(button ’.hello :text "Hello World" :command ’(print "hi"))
==>_HELLO
(pack ’.hello)

We first switched to the "TK" package, so that functions like button and pack would be
found. After doing the tkconnect, a window should appear on your screen, see See (unde-
fined) [tkconnect]|, page (undefined). The invocation of the function button creates a new
function called .hello which is a widget function. It is then made visible in the window by
using the pack function.

You may now click on the little window, and you should see the command executed in
your lisp. Thus "hi" should be printed in the lisp window. This will happen whether or
not you have a job running in the lisp, that is lisp will be interrupted and your command
will run, and then return the control to your program.

The function button is called a widget constructor, and the function .hello is called
a widget. If you have managed to accomplish the above, then GCL is probably installed
correctly, and you can graduate to the next section! If you dont like reading but prefer to
look at demos and code, then you should look in the demos directory, where you will find a

4 No Title

number of examples. A monitor for the garbage collector (mkgcmonitor), a demonstration
of canvas widgets (mkitems), a sample listbox with scrolling (mklistbox).

1.3 Common Features of Widgets

A widget is a lisp symbol which has a function binding. The first argument is always
a keyword and is called the option. The argument pattern for the remaining arguments
depends on the option. The most common option is : configure in which case the remaining
arguments are alternating keyword/value pairs, with the same keywords being permitted
as at the creation of the widget.

A widget is created by means of a widget constructor, of which there are currently 15,
each of them appearing as the title of a section in (undefined) [Widgets|, page (undefined).
They live in the "TK" package, and for the moment we will assume we have switched to this
package. Thus for example button is such a widget constructor function. Of course this is
lisp, and you can make your own widget constructors, but when you do so it is a good idea
to follow the standard argument patterns that are outlined in this section.

(button ’.hello)
==> _HELLO

creates a widget whose name is .hello. There is a parent child hierarchy among widgets
which is implicit in the name used for the widget. This is much like the pathname structure
on a Unix or Dos file system, except that >.’ is used as the separator rather than a / or
\. For this reason the widget instances are sometimes referred to as pathnames. A child
of the parent widget .hello might be called .hello. joe, and a child of this last might
be .hello.joe.bar. The parent of everyone is called . . Multiple top level windows are
created using the toplevel command (see (undefined) [toplevel], page (undefined)).

The widget constructor functions take keyword and value pairs, which allow you to
specify attributes at the time of creation:
(button ’.hello :text "Hello World" :width 20)
==>_HELLO

indicating that we want the text in the button window to be Hello World and the width
of the window to be 20 characters wide. Other types of windows allow specification in
centimeters 2c, or in inches (2i) or in millimeters 2m or in pixels 2. But text windows
usually have their dimensions specified as multiples of a character width and height. This
latter concept is called a grid.

Once the window has been created, if you want to change the text you do NOT do:
(button ’.hello :text "Bye World" :width 20)

This would be in error, because the window .hello already exists. You would either have
to first call

(destroy ’.hello)

But usually you just want to change an attribute. .hello is actually a function, as we
mentioned earlier, and it is this function that you use:

(.hello :configure :text "Bye World")

This would simply change the text, and not change where the window had been placed
on the screen (if it had), or how it had been packed into the window hierarchy. Here the

Chapter 1: General 5

argument :configure is called an option, and it specifies which types of keywords can
follow it. For example

(.hello :flash)

is also valid, but in this case the :text keyword is not permitted after flash. If it were, then
it would mean something else besides what it means in the above. For example one might

have defined
(.hello :flash :text "PUSH ME")

so here the same keyword :text would mean something else, eg to flash a subliminal message
on the screen.

We often refer to calls to the widget functions as messages. One reason for this is that
they actually turn into messages to the graphics process gcltksrv. To actually see these
messages you can do

(debugging t).

1.4 Return Values

1.4.1 Widget Constructor Return Values

On successful completion, the widget constructor functions return the symbol passed in as
the first argument. It will now have a functional binding. It is an error to pass in a symbol
which already corresponds to a widget, without first calling the destroy command. On
failure, an error is signalled.

1.4.2 Widget Return Values

The widget functions themselves, do not normally return any value. Indeed the lisp process
does not wait for them to return, but merely dispatches the commands, such as to change
the text in themselves. Sometimes however you either wish to wait, in order to synchronize,
or you wish to see if your command fails or succeeds. You request values by passing the
keyword :return and a value indicating the type.

(.hello :configure :text "Bye World" :return ’string)

==> nn

=>T
the empty string is returned as first value, and the second value T indicates that the new
text value was successfully set. LISP will not continue until the tkclsrv process indicates
back that the function call has succeeded. While waiting of course LISP will continue to
process other graphics events which arrive, since otherwise a deadlock would arise: the user
for instance might click on a mouse, just after we had decided to wait for a return value
from the .hello function. More generally a user program may be running in GCL and be
interrupted to receive and act on communications from the gcltksrv process. If an error
occurred then the second return value of the lisp function will be NIL. In this case the first
value, the string is usually an informative message about the type of error.

A special variable tk: :*break-on-errors* which if not nil, requests that that LISP
signal an error when a message is received indicating a function failed. Whenever a command
fails, whether a return value was requested or not, gcltksrv returns a message indicating
failure. The default is to not go into the debugger. When debugging your windows it may
be convenient however to set this variable to T to track down incorrect messages.

6 No Title

The gcltksrv process always returns strings as values. If :return type is specified, then
conversion to type is accomplished by calling

(coerce-result return-string type)

Here type must be a symbol with a coercion-functions property. The builtin return
types which may be requested are:

T in which case the string passed back from the gcltksrv process, will be read
by the lisp reader.

number the string is converted to a number using the current *read-base*

list-strings
(coerce-result "a b {c d} e" ’list-strings)
==> ("a" "b" "C d" ||e||)

boolean (coerce-result "1" ’boolean) ==> T (coerce-result "0" ’boolean) ==> NIL

The above symbols are in the TK or LISP package. It would be possible to add new types
just as the :return t is done:

(setf (get ’t ’coercion-functions)
(cons #’(lambda (x) (our-read-from-string x 0))
#’ (lambda (x) (format nil "“s" x))))

The coercion-functions property of a symbol, is a cons whose car is the coercion
form from a string to some possibly different lisp object, and whose cdr is a function which
builds a string to send to the graphics server. Often the two functions are inverse functions
one of the other up to equal.

1.4.3 Control Function Return Values

The control funcions (see (undefined) [Control], page (undefined)) do not return a value
or wait unless requested to do so, using the :return keyword. The types and method of
specification are the same as for the Widget Functions in the previous section.

(winfo :width ’.hello :return ’number)

==> 120
indicates that the .hello button is actually 120 pixels wide.

1.5 Argument Lists

1.5.1 Widget Functions

The rule is that the first argument for a widget function is a keyword, called the option.
The pattern of the remaining arguments depends completely on the option argument. Thus

(.hello option 7argl? 7arg2? ...)

One option which is permitted for every widget function is :configure. The argument
pattern following it is the same keyword/value pair list which is used in widget creation.
For a button widget, the other valid options are :deactivate, :flash, and :invoke. To
find these, since .hello was constructed with the button constructor, you should see See
(undefined) [button|, page (undefined). The argument pattern for other options depends
completely on the option and the widget function. For example if .scrollbar is a scroll

Chapter 1: General 7

bar window, then the option :set must be followed by 4 numeric arguments, which indicate
how the scrollbar should be displayed, see See (undefined) [scrollbar|, page (undefined).
(.scrollbar :set al a2 a3 a4)
If on the other hand .scale is a scale (see (undefined) [scale], page (undefined)), then
we have
(.scale :set al)

only one numeric argument should be supplied, in order to position the scale.

1.5.2 Widget Constructor Argument Lists

These are
(widget-constructor pathname :keywordl valuel :keyword2 value2 ...)

to create the widget whose name is pathname. The possible keywords allowed are specified
in the corresponding section of See (undefined) [Widgets|, page (undefined).

1.5.3 Concatenation Using ‘:’ in Argument List

What has been said so far about arguments is not quite true. A special string concatena-
tion construction is allowed in argument lists for widgets, widget constructors and control
functions.

First we introduce the function tk-conc which takes an arbitrary number of arguments,
which may be symbols, strings or numbers, and concatenates these into a string. The print
names of symbols are converted to lower case, and package names are ignored.

(tk-conc "a" 1 :b ’cd "e") ==> "albcde"

One could use tk-conc to construct arguments for widget functions. But even though
tk-conc has been made quite efficient, it still would involve the creation of a string. The
: construct avoids this. In a call to a widget function, a widget constructor, or a control
function you may remove the call to tk-conc and place : in between each of its arguments.
Those functions are able to understand this and treat the extra arguments as if they were
glued together in one string, but without the extra cost of actually forming that string.

(tk-concabc .. w)<==>a:b:c: ... w
(setq i 10)

(.hello :configure :text i : " pies")

(.hello :configure :text (tk-conc i " pies"))

(.hello :configure :text (format nil "“a pies" i))

The last three examples would all result in the text string being "10 pies", but the first
method is the most efficient. That call will be made with no string or cons creation. The
GC Monitor example, is written in such a way that there is no creation of cons or string
types during normal operation. This is particularly useful in that case, since one is trying
to monitor usage of conses by other programs, not its own usage.

1.6 Lisp Functions Invoked from Graphics

It is possible to make certain areas of a window mouse sensitive, or to run commands on
reception of certain events such as keystrokes, while the focus is in a certain window. This
is done by having a lisp function invoked or some lisp form evaluated. We shall refer to
such a lisp function or form as a command.

8 No Title

For example

(button °’.button :text "Hello" :command ’(print "hi"))
(button ’.jim :text "Call Jim" :command ’call-jim)
In the first case when the window .button is clicked on, the word "hi" will be printed
in the lisp to standard output. In the second case call-jim will be funcalled with no
arguments.

A command must be one of the following three types. What happens depends on which
type it is:

‘function’
If the value satisfies functionp then it will be called with a number of arguments
which is dependent on the way it was bound, to graphics.

‘string’ If the command is a string, then it is passed directly to TCL/TK for evaluation
on that side. Lisp will not be required for the evaluation when the command
is invoked.

‘lisp form’
Any other lisp object is regarded as a lisp form to be eval’d, and this will be
done when the command is invoked.

The following keywords accept as their value a command:

:command

:yscroll :yscrollcommand
:xscroll :xscrollcommand
:scrollcommand

:bind

and in addition bind takes a command as its third argument, see See (undefined) [bind],
page (undefined).

Below we give three different examples using the 3 possibilities for a command: functionp,
string, and lisp form. They all accomplish exactly the same thing. For given a frame . frame
we could construct a listbox in it as:

(1istbox ’.frame.listbox :yscroll ’joe)

Then whenever the listbox view position changes, or text is inserted, so that something
changes, the function joe will be invoked with 4 arguments giving the totalsize of the text,
maximum number of units the window can display, the index of the top unit, and finally
the index of the bottom unit. What these arguments are is specific to the widget listbox
and is documented See (undefined) [listbox|, page (undefined).

joe might be used to do anything, but a common usage is to have joe alter the position
of some other window, such as a scroll bar window. Indeed if .scrollbar is a scrollbar
then the function

(defun joe (a b c d)
(.scrollbar :set a b c d))
would look after sizing the scrollbar appropriately for the percentage of the window visible,
and positioning it.

A second method of accomplishing this identical, using a string (the second type of

command),

Chapter 1: General 9

(listbox ’.frame.listbox :yscroll ".scrollbar set")

and this will not involve a call back to lisp. It uses the fact that the TK graphics side
understands the window name .scrollbar and that it takes the option set. Note that it
does not get the : before the keyword in this case.

In the case of a command which is a lisp form but is not installed via bind or :bind,
then the form will be installed as

#’ (lambda (&rest *arglist*) lisp-form)

where the lisp-form might wish to access the elements of the special variable *arglist*.
Most often this list will be empty, but for example if the command was setup for .scale
which is a scale, then the command will be supplied one argument which is the new numeric
value which is the scale position. A third way of accomplishing the scrollbar setting using
a lisp form is:

(listbox ’.frame.listbox :yscroll ’(apply ’.scrollbar :set *arglistx))

The bind command and :bind keyword, have an additional wrinkle, see See (undefined)
[bind], page (undefined). These are associated to an event in a particular window, and the
lisp function or form to be evaled must have access to that information. For example the x
y position, the window name, the key pressed, etc. This is done via percent symbols which
are specified, see See (undefined) [bind], page (undefined).

(bind "Entry" "<Control-KeyPress>" ’(emacs-move %W %A))

will cause the function emacs-move to be be invoked whenever a control key is pressed
(unless there are more key specific or window specific bindings of said key). It will be
invoked with two arguments, the first %W indicating the window in which it was invoked,
and the second being a string which is the ascii keysym which was pressed at the same time
as the control key.

These percent constructs are only permitted in commands which are invoked via bind
or :bind. The lisp form which is passed as the command, is searched for the percent
constructs, and then a function

#’ (lambda (%W %A) (emacs-move %W %A))
will be invoked with two arguments, which will be supplied by the TK graphics server,

at the time the command is invoked. The *arglist* construct is not available for these
commands.

1.7 Linked Variables

It is possible to link lisp variables to TK variables. In general when the TK variable is
changed, by for instance clicking on a radiobutton, the linked lisp variable will be changed.
Conversely changing the lisp variable will be noticed by the TK graphics side, if one does
the assignment in lisp using setk instead of setq.

(button °’.hello :textvariable ’#*message* :text "hi there")
(pack ’.hello)

This causes linking of the global variable *message* in lisp to a corresponding variable
in TK. Moreover the message that is in the button .hello will be whatever the value of
this global variable is (so long as the TK side is notified of the change!).

Thus if one does

10 No Title

(setk *message* "good bye")
then the button will change to have good bye as its text. The lisp macro setk expands into
(progl (setf *message* "good bye") (notice-text-variables))

which does the assignment, and then goes thru the linked variables checking for those that
have changed, and updating the TK side should there be any. Thus if you have a more
complex program which might have done the assignment of your global variable, you may
include the call to notice-text-variables at the end, to assure that the graphics side
knows about the changes.

A variable which is linked using the keyword :textvariable is always a variable con-
taining a string.
However it is possible to have other types of variables.

(checkbutton ’.checkbuttonl :text "A button" :variable ’(boolean *joex))

(checkbutton ’.checkbutton2 :text "A button" :variable ’*joex*)

(checkbutton ’.checkbutton3 :text "Debugging" :variable ’(t *debugk)
:onvalue 100 :offvalue -1)

The first two examples are the same in that the default variable type for a checkbutton is
boolean. Notice that the specification of a variable type is by (type variable). The types
which are permissible are those which have coercion-fucntions, See (undefined) [Return
Values|, page (undefined). In the first example a variable *joe* will be linked, and its
default initial value will be set to nil, since the default initial state of the check button is
off, and the default off value is nil. Actually on the TK side, the corresponding boolean
values are "1" and "0", but the boolean type makes these become t and nil.

In the third example the variable *debug® may have any lisp value (here type is t). The
initial value will be made to be -1, since the checkbutton is off. Clicking on .checkbutton3
will result in the value of *debug* being changed to 100, and the light in the button will be
toggled to on, See (undefined) [checkbutton], page (undefined). You may set the variable
to be another value besides 100.

You may also call
(link-text-variable ’*joe* ’boolean)

to cause the linking of a variable named *joe*. This is done automatically whenever the
variable is specified after one of the keys
:variable :textvariable.

Just as one must be cautious about using global variables in lisp, one must be cautious in
making such linked variables. In particular note that the TK side, uses variables for various
purposes. If you make a checkbutton with pathname .a.b.c then unless you specify a
:variable option, the variable ¢ will become associated to the TK value of the checkbutton.
We do NOT link this variable by default, feeling that one might inadvertently alter global
variables, and that they would not typically use the lisp convention of being of the form
c. You must specify the :variable option, or call link-variable.

1.8 tkconnect

tkconnect &key host display can-rsh gcltksrv

This function provides a connection to a graphics server process, which in turn connects
to possibly several graphics display screens. The graphics server process, called gcltksrv

Chapter 1: General 11

may or may not run on the same machine as the lisp to which it is attached. display
indicates the name of the default display to connect to, and this in turn defaults to the
value of the environment variable DISPLAY.

When tkconnect is invoked, a socket is opened and it waits for a graphics process to
connect to it. If the host argument is not supplied, then a process will be spawned which
will connect back to the lisp process. The name of the command for invoking the process is
the value of the gcltksrv argument, which defaults to the value of the environment variable
GCL_TK_SERVER. If that variable is not set, then the lisp *1lib-directory* is searched for
an entry gcl-tk/gcltksrv.

If host is supplied, then a command to run on the remote machine will be printed on
standard output. If can-rsh is not nil, then the command will not be printed, but rather
an attempt will be made to rsh to the machine, and to run the command.

Thus
(tkconnect)

would start the process on the local machine, and use for display the value of the environ-
ment variable DISPLAY.

(tkconnect :host "max.ma.utexas.edu" :can-rsh t)

would cause an attempt to rsh to max and to run the command there, to connect back to
the appropriate port on the localhost.
You may indicate that different toplevel windows be on different displays, by using the
:display argument when creating the window, See (undefined) [toplevel], page (undefined).
Clearly you must have a copy of the program gcltksrv and TK libraries installed on
the machine where you wish to run the server.

Chapter 2: Widgets 13

2 Widgets

2.1 button

button \- Create and manipulate button widgets

Synopsis

button pathName ?options?

Standard Options

activeBackground bitmap font relief
activeForeground borderWidth foreground text

anchor cursor padX textVariable
background disabledForeground padY

See (undefined) [options|, page (undefined), for more information.

Arguments for Button

:command

:height

:state

:width

Name="command" Class="Command"

Specifies a Tcl command to associate with the button. This command is typi-
cally invoked when mouse button 1 is released over the button window.

Name="height" Class="Height"

Specifies a desired height for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in lines of text. If this option isn’t specified, the
button’s desired height is computed from the size of the bitmap or text being
displayed in it.

Name="state" Class="State"

Specifies one of three states for the button: normal, active, or disabled. In
normal state the button is displayed using the foreground and background op-
tions. The active state is typically used when the pointer is over the button.
In active state the button is displayed using the activeForeground and active-
Background options. Disabled state means that the button is insensitive: it
doesn’t activate and doesn’t respond to mouse button presses. In this state
the disabledForeground and background options determine how the button is
displayed.

14 No Title

Name="width" Class="Width"

Specifies a desired width for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in characters. If this option isn’t specified, the
button’s desired width is computed from the size of the bitmap or text being
displayed in it.

Description

The button command creates a new window (given by the pathName argument) and makes
it into a button widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the button such as its
colors, font, text, and initial relief. The button command returns its pathName argument.
At the time this command is invoked, there must not exist a window named pathName, but
pathName’s parent must exist.

A button is a widget that displays a textual string or bitmap. It can display itself in
either of three different ways, according to the state option; it can be made to appear raised,
sunken, or flat; and it can be made to flash. When a user invokes the button (by pressing
mouse button 1 with the cursor over the button), then the Tcl command specified in the
:command option is invoked.

A Button Widget’s Arguments

The button command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for button widgets:

pathName :activate
Change the button’s state to active and redisplay the button using its active
foreground and background colors instead of normal colors. This command is
ignored if the button’s state is disabled. This command is obsolete and will
eventually be removed; use “pathName :configure :state active” instead.

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the button command.

pathName :deactivate
Change the button’s state to normal and redisplay the button using its normal
foreground and background colors. This command is ignored if the button’s

Chapter 2: Widgets 15

state is disabled. This command is obsolete and will eventually be removed;
use “pathName :configure :state normal” instead.

pathName :flash
Flash the button. This is accomplished by redisplaying the button several
times, alternating between active and normal colors. At the end of the flash
the button is left in the same normal/active state as when the command was
invoked. This command is ignored if the button’s state is disabled.

pathName :invoke
Invoke the Tcl command associated with the button, if there is one. The return
value is the return value from the Tcl command, or an empty string if there
is no command associated with the button. This command is ignored if the
button’s state is disabled.

"Default Bindings"
Tk automatically creates class bindings for buttons that give them the following default
behavior:

[1] The button activates whenever the mouse passes over it and deactivates whenever
the mouse leaves the button.

[2] The button’s relief is changed to sunken whenever mouse button 1 is pressed over
the button, and the relief is restored to its original value when button 1 is later released.

[3] If mouse button 1 is pressed over the button and later released over the button,
the button is invoked. However, if the mouse is not over the button when button 1 is
released, then no invocation occurs.

If the button’s state is disabled then none of the above actions occur: the button is
completely non-responsive.

The behavior of buttons can be changed by defining new bindings for individual widgets
or by redefining the class bindings.

Keywords

button, widget
2.2 listbox
listbox \- Create and manipulate listbox widgets

Synopsis

listbox pathName ?options?

Standard Options

background foreground selectBackground xScrollCommand
borderWidth font selectBorderWidth yScrollCommand
cursor geometry selectForeground

exportSelection relief setGrid

See (undefined) [options], page (undefined), for more information.

16 No Title

Arguments for Listbox

None.

Description

The listbox command creates a new window (given by the pathName argument) and makes
it into a listbox widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the listbox such as its
colors, font, text, and relief. The listbox command returns its pathName argument. At
the time this command is invoked, there must not exist a window named pathName, but
pathName’s parent must exist.

A listbox is a widget that displays a list of strings, one per line. When first created,
a new listbox has no elements in its list. Elements may be added or deleted using widget
commands described below. In addition, one or more elements may be selected as described
below. If a listbox is exporting its selection (see exportSelection option), then it will observe
the standard X11 protocols for handling the selection; listbox selections are available as type
STRING, consisting of a Tcl list with one entry for each selected element.

For large lists only a subset of the list elements will be displayed in the listbox window at
once; commands described below may be used to change the view in the window. Listboxes
allow scrolling in both directions using the standard xScrollCommand and yScrollCommand
options. They also support scanning, as described below.

A Listbox’s Arguments

The listbox command creates a new T'cl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for listbox widgets:

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the listbox command.

pathName :curselection
Returns a list containing the indices of all of the elements in the listbox that
are currently selected. If there are no elements selected in the listbox then an
empty string is returned.

pathName :delete first ?last?
Delete one or more elements of the listbox. First and last give the integer
indices of the first and last elements in the range to be deleted. If last isn’t

Chapter 2:

pathName

pathName

pathName

pathName

pathName

Widgets 17

specified it defaults to first, i.e. a single element is deleted. An index of 0
corresponds to the first element in the listbox. Either first or last may be
specified as end, in which case it refers to the last element of the listbox. This
command returns an empty string

:get index

Return the contents of the listbox element indicated by index. Index must be
a non-negative integer (0 corresponds to the first element in the listbox), or it
may also be specified as end to indicate the last element in the listbox.

:dinsert index 7element element ...7

Insert zero or more new elements in the list just before the element given by
index. If index is specified as end then the new elements are added to the end
of the list. Returns an empty string.

:nearest y
Given a y-coordinate within the listbox window, this command returns the
index of the (visible) listbox element nearest to that y-coordinate.

iscan option args

This command is used to implement scanning on listboxes. It has two forms,
depending on option:

pathName :scan :mark z y
Records z and y and the current view in the listbox window; used
in conjunction with later scan dragto commands. Typically this
command is associated with a mouse button press in the widget.
It returns an empty string.

pathName :scan :dragto z y.

This command computes the difference between its z and y argu-
ments and the z and y arguments to the last scan mark command
for the widget. It then adjusts the view by 10 times the difference
in coordinates. This command is typically associated with mouse
motion events in the widget, to produce the effect of dragging the
list at high speed through the window. The return value is an
empty string.

:select option arg

This command is used to adjust the selection within a listbox. It has several
forms, depending on option. In all of the forms the index end refers to the last
element in the listbox.

pathName :select :adjust index
Locate the end of the selection nearest to the element given by
indez, and adjust that end of the selection to be at index (i.e in-
cluding but not going beyond indezx). The other end of the selection
is made the anchor point for future select to commands. If the se-
lection isn’t currently in the listbox, then this command is identical
to the select from widget command. Returns an empty string.

18 No Title

pathName :select :clear
If the selection is in this listbox then it is cleared so that none of
the listbox’s elements are selected anymore.

pathName :select :from index
Set the selection to consist of element index, and make index the
anchor point for future select to widget commands. Returns an
empty string.

pathName :select :to index
Set the selection to consist of the elements from the anchor point
to element index, inclusive. The anchor point is determined by the
most recent select from or select adjust command in this widget.
If the selection isn’t in this widget, this command is identical to
select from. Returns an empty string.

pathName :size
Returns a decimal string indicating the total number of elements in the listbox.

pathName :xview index
Adjust the view in the listbox so that character position index is displayed at
the left edge of the widget. Returns an empty string.

pathName :yview index
Adjust the view in the listbox so that element indez is displayed at the top
of the widget. If index is specified as end it indicates the last element of the
listbox. Returns an empty string.

"Default Bindings"

Tk automatically creates class bindings for listboxes that give them the following default
behavior:

[1] When button 1 is pressed over a listbox, the element underneath the mouse cursor
is selected. The mouse can be dragged to select a range of elements.

[2] The ends of the selection can be adjusted by dragging with mouse button 1 while
the shift key is down; this will adjust the end of the selection that was nearest to the
mouse cursor when button 1 was pressed.

[3] The view in the listbox can be adjusted by dragging with mouse button 2.

The behavior of listboxes can be changed by defining new bindings for individual widgets
or by redefining the class bindings. In addition, the procedure tk_listboxSingleSelect may
be invoked to change listbox behavior so that only a single element may be selected at once.

Keywords

listbox, widget

2.3 scale

scale \- Create and manipulate scale widgets

Chapter 2: Widgets 19

Synopsis

scale pathName ?options?

Standard Options

activeForeground borderWidth font orient
background cursor foreground relief

See (undefined) [options|, page (undefined), for more information.

Arguments for Scale

:command

Name="command" Class="Command"

Specifies the prefix of a T'cl command to invoke whenever the value of the scale
is changed interactively. The actual command consists of this option followed
by a space and a number. The number indicates the new value of the scale.

:from
Name="from" Class="From"
Specifies the value corresponding to the left or top end of the scale. Must be
an integer.
:label
Name="1abel" Class="Label"
Specifies a string to displayed as a label for the scale. For vertical scales the
label is displayed just to the right of the top end of the scale. For horizontal
scales the label is displayed just above the left end of the scale.
:length
Name="length" Class="Length"
Specifies the desired long dimension of the scale in screen units, that is in any
of the forms acceptable to Tk_GetPixels. For vertical scales this is the scale’s
height; for horizontal scales it is the scale’s width.
:showvalue
Name="showValue" Class="ShowValue"
Specifies a boolean value indicating whether or not the current value of the
scale is to be displayed.
:sliderforeground

Name="sliderForeground" Class="sliderForeground"

Specifies the color to use for drawing the slider under normal conditions. When
the mouse is in the slider window then the slider’s color is determined by the
activeForeground option.

20 No Title

:sliderlength
Name="sliderLength" Class="SliderLength"

Specfies the size of the slider, measured in screen units along the slider’s long
dimension. The value may be specified in any of the forms acceptable to
Tk_GetPixels.

:state

Name="state" Class="State"

Specifies one of two states for the scale: normal or disabled. If the scale is
disabled then the value may not be changed and the scale won’t activate when
the mouse enters it.

:tickinterval
Name="tickInterval" Class="TickInterval"

Must be an integer value. Determines the spacing between numerical tick-marks
displayed below or to the left of the slider. If specified as 0, then no tick-marks
will be displayed.

:to

Name="to" Class="To"

Specifies the value corresponding to the right or bottom end of the scale. Must
be an integer. This value may be either less than or greater than the from
option.

:width
Name="width" Class="Width"

Specifies the desired narrow dimension of the scale in screen units (i.e. any of
the forms acceptable to Tk_GetPixels). For vertical scales this is the scale’s
width; for horizontal scales this is the scale’s height.

Description

The scale command creates a new window (given by the pathName argument) and makes it
into a scale widget. Additional options, described above, may be specified on the command
line or in the option database to configure aspects of the scale such as its colors, orientation,
and relief. The scale command returns its pathName argument. At the time this command
is invoked, there must not exist a window named pathName, but pathName’s parent must
exist,.

A scale is a widget that displays a rectangular region and a small slider. The rectangular
region corresponds to a range of integer values (determined by the from and to options), and
the position of the slider selects a particular integer value. The slider’s position (and hence
the scale’s value) may be adjusted by clicking or dragging with the mouse as described in

Chapter 2: Widgets 21

the BINDINGS section below. Whenever the scale’s value is changed, a Tcl command is
invoked (using the command option) to notify other interested widgets of the change.

Three annotations may be displayed in a scale widget: a label appearing at the top-left
of the widget (top-right for vertical scales), a number displayed just underneath the slider
(just to the left of the slider for vertical scales), and a collection of numerical tick-marks just
underneath the current value (just to the left of the current value for vertical scales). Each
of these three annotations may be selectively enabled or disabled using the configuration
options.

A Scale’s" Argumentsommand"

The scale command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for scale widgets:

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_ConfigureInfo for information on the format of this list). If option is speci-
fied with no wvalue, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the scale command.

pathName :get
Returns a decimal string giving the current value of the scale.

pathName :set value
This command is invoked to change the current value of the scale, and hence
the position at which the slider is displayed. Value gives the new value for the
scale.

Bindings

When a new scale is created, it is given the following initial behavior by default:

<Enter> Change the slider display to use activeForeground instead of slide