
Modeling Language GNU MathProg

Language Reference

for GLPK Version 4.48

(DRAFT, January 2013)

The GLPK package is part of the GNU Project released under the aegis of GNU.

Copyright c© 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2013 Andrew Makhorin, Department for Applied Informatics, Moscow
Aviation Institute, Moscow, Russia. All rights reserved.

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-
1301, USA.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

2

Contents

1 Introduction 6
1.1 Linear programming problem . 6
1.2 Model objects . 7
1.3 Structure of model description 8

2 Coding model description 9
2.1 Symbolic names . 9
2.2 Numeric literals . 10
2.3 String literals . 10
2.4 Keywords . 10
2.5 Delimiters . 11
2.6 Comments . 11

3 Expressions 12
3.1 Numeric expressions . 12

3.1.1 Numeric literals . 13
3.1.2 Dummy indices . 13
3.1.3 Unsubscripted parameters 13
3.1.4 Subscripted parameters 13
3.1.5 Function references . 13
3.1.6 Iterated expressions . 14
3.1.7 Conditional expressions 15
3.1.8 Parenthesized expressions 15
3.1.9 Arithmetic operators . 16
3.1.10 Hierarchy of operations 16

3.2 Symbolic expressions . 17
3.2.1 Function references . 17
3.2.2 Symbolic operators . 18
3.2.3 Hierarchy of operations 18

3.3 Indexing expressions and dummy indices 18
3.4 Set expressions . 22

3.4.1 Literal sets . 22
3.4.2 Unsubscripted sets . 22
3.4.3 Subscripted sets . 23
3.4.4 “Arithmetic” sets . 23
3.4.5 Indexing expressions . 23
3.4.6 Iterated expressions . 23
3.4.7 Conditional expressions 24
3.4.8 Parenthesized expressions 24
3.4.9 Set operators . 24
3.4.10 Hierarchy of operations 25

3.5 Logical expressions . 25
3.5.1 Numeric expressions . 26
3.5.2 Relational operators . 26

3

3.5.3 Iterated expressions . 26
3.5.4 Parenthesized expressions 27
3.5.5 Logical operators . 27
3.5.6 Hierarchy of operations 28

3.6 Linear expressions . 28
3.6.1 Unsubscripted variables 28
3.6.2 Subscripted variables . 29
3.6.3 Iterated expressions . 29
3.6.4 Conditional expressions 29
3.6.5 Parenthesized expressions 29
3.6.6 Arithmetic operators . 30
3.6.7 Hierarchy of operations 30

4 Statements 31
4.1 Set statement . 31
4.2 Parameter statement . 32
4.3 Variable statement . 34
4.4 Constraint statement . 36
4.5 Objective statement . 37
4.6 Solve statement . 38
4.7 Check statement . 39
4.8 Display statement . 39
4.9 Printf statement . 40
4.10 For statement . 41
4.11 Table statement . 42

4.11.1 Table structure . 43
4.11.2 Reading data from input table 43
4.11.3 Writing data to output table 44

5 Model data 45
5.1 Coding data section . 46
5.2 Set data block . 46

5.2.1 Assign data record . 48
5.2.2 Slice data record . 48
5.2.3 Simple data record . 48
5.2.4 Matrix data record . 48
5.2.5 Transposed matrix data record 49

5.3 Parameter data block . 49
5.3.1 Assign data record . 51
5.3.2 Slice data record . 51
5.3.3 Plain data record . 52
5.3.4 Tabular data record . 52
5.3.5 Transposed tabular data record 53
5.3.6 Tabbing data format . 53

A Using suffixes 54

4

B Date and time functions 55
B.1 Obtaining current calendar time 55
B.2 Converting character string to calendar time 55
B.3 Converting calendar time to character string 56

C Table drivers 60
C.1 CSV table driver . 60
C.2 xBASE table driver . 61
C.3 ODBC table driver . 62
C.4 MySQL table driver . 64

D Solving models with glpsol 66

E Example model description 67
E.1 Model description written in MathProg 67
E.2 Generated LP problem instance 68
E.3 Optimal LP solution . 68

Acknowledgment 70

5

1 Introduction

GNU MathProg is a modeling language intended for describing linear mathe-
matical programming models.1

Model descriptions written in the GNU MathProg language consist of a set of
statements and data blocks constructed by the user from the language elements
described in this document.

In a process called translation, a program called the model translator analyzes
the model description and translates it into internal data structures, which may
be then used either for generating mathematical programming problem instance
or directly by a program called the solver to obtain numeric solution of the
problem.

1.1 Linear programming problem

In MathProg the linear programming (LP) problem is stated as follows:

minimize (or maximize)

z = c1x1 + c2x2 + . . .+ cnxn + c0 (1.1)

subject to linear constraints

L1 ≤ a11x1 + a12x2 + . . .+ a1nxn ≤ U1

L2 ≤ a21x1 + a22x2 + . . .+ a2nxn ≤ U2

.
Lm ≤ am1x1 + am2x2 + . . .+ amnxn ≤ Um

(1.2)

and bounds of variables

l1 ≤ x1 ≤ u1

l2 ≤ x2 ≤ u2

.
ln ≤ xn ≤ un

(1.3)

where x1, x2, . . . , xn are variables; z is the objective function; c1, c2, . . . ,
cn are objective coefficients; c0 is the constant term (“shift”) of the objective
function; a11, a12, . . . , amn are constraint coefficients; L1, L2, . . . , Lm are lower
constraint bounds; U1, U2, . . . , Um are upper constraint bounds; l1, l2, . . . , ln
are lower bounds of variables; u1, u2, . . . , un are upper bounds of variables.

Bounds of variables and constraint bounds can be finite as well as infinite.
Besides, lower bounds can be equal to corresponding upper bounds. Thus, the
following types of variables and constraints are allowed:

1The GNU MathProg language is a subset of the AMPL language. Its GLPK implementa-
tion is mainly based on the paper: Robert Fourer, David M. Gay, and Brian W. Kernighan,
“A Modeling Language for Mathematical Programming.” Management Science 36 (1990)
pp. 519-54.

6

−∞ < x < +∞ Free (unbounded) variable
l ≤ x < +∞ Variable with lower bound

−∞ < x ≤ u Variable with upper bound
l ≤ x ≤ u Double-bounded variable
l = x = u Fixed variable

−∞ <
∑
ajxj < +∞ Free (unbounded) linear form

L ≤
∑
ajxj < +∞ Inequality constraint “greater than or equal to”

−∞ <
∑
ajxj ≤ U Inequality constraint “less than or equal to”

L ≤
∑
ajxj ≤ U Double-bounded inequality constraint

L =
∑
ajxj = U Equality constraint

In addition to pure LP problems MathProg also allows mixed integer linear
programming (MIP) problems, where some or all variables are restricted to be
integer or binary.

1.2 Model objects

In MathProg the model is described in terms of sets, parameters, variables,
constraints, and objectives, which are called model objects.

The user introduces particular model objects using the language statements.
Each model object is provided with a symbolic name that uniquely identifies
the object and is intended for referencing purposes.

Model objects, including sets, can be multidimensional arrays built over
indexing sets. Formally, n-dimensional array A is the mapping:

A : ∆→ Ξ, (1.4)

where ∆ ⊆ S1 × . . .× Sn is a subset of the Cartesian product of indexing sets,
Ξ is a set of array members. In MathProg the set ∆ is called the subscript
domain. Its members are n-tuples (i1, . . . , in), where i1 ∈ S1, . . . , in ∈ Sn.

If n = 0, the Cartesian product above has exactly one member (namely,
0-tuple), so it is convenient to think scalar objects as 0-dimensional arrays hav-
ing one member.

The type of array members is determined by the type of corresponding model
object as follows:

Model object Array member
Set Elemental plain set
Parameter Number or symbol
Variable Elemental variable
Constraint Elemental constraint
Objective Elemental objective

In order to refer to a particular object member the object should be provided
with subscripts. For example, if a is a 2-dimensional parameter defined over
I × J , a reference to its particular member can be written as a[i, j], where i ∈ I
and j ∈ J . It is understood that scalar objects being 0-dimensional need no
subscripts.

7

1.3 Structure of model description

It is sometimes desirable to write a model which, at various points, may require
different data for each problem instance to be solved using that model. For
this reason in MathProg the model description consists of two parts: the model
section and the data section.

The model section is a main part of the model description that contains
declarations of model objects and is common for all problems based on the
corresponding model.

The data section is an optional part of the model description that contains
data specific for a particular problem instance.

Depending on what is more convenient the model and data sections can be
placed either in one file or in two separate files. The latter feature allows having
arbitrary number of different data sections to be used with the same model
section.

8

2 Coding model description

The model description is coded in plain text format using ASCII character set.
Characters valid in the model description are the following:

• alphabetic characters:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z _

• numeric characters:
0 1 2 3 4 5 6 7 8 9

• special characters:
! " # & ’ () * + , - . / : ; < = > [] ^ { | }

• white-space characters:
SP HT CR NL VT FF

Within string literals and comments any ASCII characters (except control
characters) are valid.

White-space characters are non-significant. They can be used freely between
lexical units to improve readability of the model description. They are also used
to separate lexical units from each other if there is no other way to do that.

Syntactically model description is a sequence of lexical units in the following
categories:

• symbolic names;

• numeric literals;

• string literals;

• keywords;

• delimiters;

• comments.

The lexical units of the language are discussed below.

2.1 Symbolic names

A symbolic name consists of alphabetic and numeric characters, the first of
which must be alphabetic. All symbolic names are distinct (case sensitive).

Examples

alpha123

This_is_a_name

_P123_abc_321

9

Symbolic names are used to identify model objects (sets, parameters, vari-
ables, constraints, objectives) and dummy indices.

All symbolic names (except names of dummy indices) must be unique, i.e.
the model description must have no objects with identical names. Symbolic
names of dummy indices must be unique within the scope, where they are valid.

2.2 Numeric literals

A numeric literal has the form xxEsyy, where xx is a number with optional
decimal point, s is the sign + or -, yy is a decimal exponent. The letter E is case
insensitive and can be coded as e.

Examples

123

3.14159

56.E+5

.78

123.456e-7

Numeric literals are used to represent numeric quantities. They have obvious
fixed meaning.

2.3 String literals

A string literal is a sequence of arbitrary characters enclosed either in single
quotes or in double quotes. Both these forms are equivalent.

If the single quote is part of a string literal enclosed in single quotes, it
must be coded twice. Analogously, if the double quote is part of a string literal
enclosed in double quotes, it must be coded twice.

Examples

’This is a string’

"This is another string"

’1 + 2 = 3’

’That’’s all’

"""Hello there,"" said the Captain"

String literals are used to represent symbolic quantities.

2.4 Keywords

A keyword is a sequence of alphabetic characters and possibly some special
characters.

All keywords fall into two categories: reserved keywords, which cannot be
used as symbolic names, and non-reserved keywords, which being recognized by
context can be used as symbolic names.

10

The reserved keywords are the following:

and else mod union

by if not within

cross in or

diff inter symdiff

div less then

Non-reserved keywords are described in following sections.
All the keywords have fixed meaning, which will be explained on discussion

of corresponding syntactic constructions, where the keywords are used.

2.5 Delimiters

A delimiter is either a single special character or a sequence of two special
characters as follows:

+ ^ == ! :)

- & >= && ; [

* < > || := |

/ <= <> . .. {
** = != , (}

If the delimiter consists of two characters, there must be no spaces between
the characters.

All the delimiters have fixed meaning, which will be explained on discussion
corresponding syntactic constructions, where the delimiters are used.

2.6 Comments

For documenting purposes the model description can be provided with com-
ments, which may have two different forms. The first form is a single-line
comment, which begins with the character # and extends until end of line. The
second form is a comment sequence, which is a sequence of any characters en-
closed within /* and */.

Examples

param n := 10; # This is a comment

/* This is another comment */

Comments are ignored by the model translator and can appear anywhere in
the model description, where white-space characters are allowed.

11

3 Expressions

An expression is a rule for computing a value. In model description expressions
are used as constituents of certain statements.

In general case expressions consist of operands and operators.
Depending on the type of the resultant value all expressions fall into the

following categories:

• numeric expressions;

• symbolic expressions;

• indexing expressions;

• set expressions;

• logical expressions;

• linear expressions.

3.1 Numeric expressions

A numeric expression is a rule for computing a single numeric value represented
as a floating-point number.

The primary numeric expression may be a numeric literal, dummy index,
unsubscripted parameter, subscripted parameter, built-in function reference,
iterated numeric expression, conditional numeric expression, or another numeric
expression enclosed in parentheses.

Examples

1.23 (numeric literal)
j (dummy index)
time (unsubscripted parameter)
a[’May 2003’,j+1] (subscripted parameter)
abs(b[i,j]) (function reference)
sum{i in S diff T} alpha[i] * b[i,j] (iterated expression)
if i in I then 2 * p else q[i+1] (conditional expression)
(b[i,j] + .5 * c) (parenthesized expression)

More general numeric expressions containing two or more primary numeric
expressions may be constructed by using certain arithmetic operators.

Examples

j+1

2 * a[i-1,j+1] - b[i,j]

sum{j in J} a[i,j] * x[j] + sum{k in K} b[i,k] * x[k]

(if i in I then 2 * p else q[i+1]) / (a[i,j] + 1.5)

12

3.1.1 Numeric literals

If the primary numeric expression is a numeric literal, the resultant value is
obvious.

3.1.2 Dummy indices

If the primary numeric expression is a dummy index, the resultant value is
current value assigned to that dummy index.

3.1.3 Unsubscripted parameters

If the primary numeric expression is an unsubscripted parameter (which must
be 0-dimensional), the resultant value is the value of that parameter.

3.1.4 Subscripted parameters

The primary numeric expression, which refers to a subscripted parameter, has
the following syntactic form:

name[i1, i2, . . . , in]

where name is the symbolic name of the parameter, i1, i2, . . . , in are subscripts.
Each subscript must be a numeric or symbolic expression. The number

of subscripts in the subscript list must be the same as the dimension of the
parameter with which the subscript list is associated.

Actual values of subscript expressions are used to identify a particular mem-
ber of the parameter that determines the resultant value of the primary expres-
sion.

3.1.5 Function references

In MathProg there exist the following built-in functions which may be used in
numeric expressions:

abs(x) |x|, absolute value of x
atan(x) arctanx, principal value of the arc tangent of x (in

radians)
atan(y, x) arctan y/x, principal value of the arc tangent of y/x

(in radians). In this case the signs of both argu-
ments y and x are used to determine the quadrant
of the resultant value

card(X) |X|, cardinality (the number of elements) of set X
ceil(x) dxe, smallest integer not less than x (“ceiling of x”)
cos(x) cosx, cosine of x (in radians)
exp(x) ex, base-e exponential of x
floor(x) bxc, largest integer not greater than x (“floor of x”)

13

gmtime() the number of seconds elapsed since 00:00:00 Jan 1,
1970, Coordinated Universal Time (for details see
Subsection B.1, page 55)

length(s) |s|, length of character string s
log(x) log x, natural logarithm of x
log10(x) log10 x, common (decimal) logarithm of x
max(x1, x2, . . . , xn) the largest of values x1, x2, . . . , xn
min(x1, x2, . . . , xn) the smallest of values x1, x2, . . . , xn
round(x) rounding x to nearest integer
round(x, n) rounding x to n fractional decimal digits
sin(x) sinx, sine of x (in radians)
sqrt(x)

√
x, non-negative square root of x

str2time(s, f) converting character string s to calendar time (for
details see Subsection B.2, page 55)

trunc(x) truncating x to nearest integer
trunc(x, n) truncating x to n fractional decimal digits
Irand224() generating pseudo-random integer uniformly dis-

tributed in [0, 224)
Uniform01() generating pseudo-random number uniformly dis-

tributed in [0, 1)
Uniform(a, b) generating pseudo-random number uniformly dis-

tributed in [a, b)
Normal01() generating Gaussian pseudo-random variate with

µ = 0 and σ = 1
Normal(µ, σ) generating Gaussian pseudo-random variate with

given µ and σ

Arguments of all built-in functions, except card, length, and str2time,
must be numeric expressions. The argument of card must be a set expression.
The argument of length and both arguments of str2time must be symbolic
expressions.

The resultant value of the numeric expression, which is a function reference,
is the result of applying the function to its argument(s).

Note that each pseudo-random generator function has a latent argument (i.e.
some internal state), which is changed whenever the function has been applied.
Thus, if the function is applied repeatedly even to identical arguments, due to
the side effect different resultant values are always produced.

3.1.6 Iterated expressions

An iterated numeric expression is a primary numeric expression, which has the
following syntactic form:

iterated-operator indexing-expression integrand

where iterated-operator is the symbolic name of the iterated operator to be per-
formed (see below), indexing-expression is an indexing expression which intro-

14

duces dummy indices and controls iterating, integrand is a numeric expression
that participates in the operation.

In MathProg there exist four iterated operators, which may be used in nu-
meric expressions:

sum summation
∑

(i1,...,in)∈∆

f(i1, . . . , in)

prod production
∏

(i1,...,in)∈∆

f(i1, . . . , in)

min minimum min
(i1,...,in)∈∆

f(i1, . . . , in)

max maximum max
(i1,...,in)∈∆

f(i1, . . . , in)

where i1, . . . , in are dummy indices introduced in the indexing expression, ∆ is
the domain, a set of n-tuples specified by the indexing expression which defines
particular values assigned to the dummy indices on performing the iterated
operation, f(i1, . . . , in) is the integrand, a numeric expression whose resultant
value depends on the dummy indices.

The resultant value of an iterated numeric expression is the result of apply-
ing of the iterated operator to its integrand over all n-tuples contained in the
domain.

3.1.7 Conditional expressions

A conditional numeric expression is a primary numeric expression, which has
one of the following two syntactic forms:

if b then x else y

if b then x

where b is an logical expression, x and y are numeric expressions.
The resultant value of the conditional expression depends on the value of

the logical expression that follows the keyword if. If it takes on the value true,
the value of the conditional expression is the value of the expression that follows
the keyword then. Otherwise, if the logical expression takes on the value false,
the value of the conditional expression is the value of the expression that follows
the keyword else. If the second, reduced form of the conditional expression is
used and the logical expression takes on the value false, the resultant value of
the conditional expression is zero.

3.1.8 Parenthesized expressions

Any numeric expression may be enclosed in parentheses that syntactically makes
it a primary numeric expression.

Parentheses may be used in numeric expressions, as in algebra, to specify
the desired order in which operations are to be performed. Where parentheses
are used, the expression within the parentheses is evaluated before the resultant
value is used.

15

The resultant value of the parenthesized expression is the same as the value
of the expression enclosed within parentheses.

3.1.9 Arithmetic operators

In MathProg there exist the following arithmetic operators, which may be used
in numeric expressions:

+ x unary plus
- x unary minus
x + y addition
x - y subtraction
x less y positive difference (if x < y then 0 else x− y)
x * y multiplication
x / y division
x div y quotient of exact division
x mod y remainder of exact division
x ** y, x ^ y exponentiation (raising to power)

where x and y are numeric expressions.
If the expression includes more than one arithmetic operator, all operators

are performed from left to right according to the hierarchy of operations (see
below) with the only exception that the exponentiaion operators are performed
from right to left.

The resultant value of the expression, which contains arithmetic operators,
is the result of applying the operators to their operands.

3.1.10 Hierarchy of operations

The following list shows the hierarchy of operations in numeric expressions:

Operation Hierarchy
Evaluation of functions (abs, ceil, etc.) 1st
Exponentiation (**, ^) 2nd
Unary plus and minus (+, -) 3rd
Multiplication and division (*, /, div, mod) 4th
Iterated operations (sum, prod, min, max) 5th
Addition and subtraction (+, -, less) 6th
Conditional evaluation (if . . . then . . . else) 7th

This hierarchy is used to determine which of two consecutive operations is
performed first. If the first operator is higher than or equal to the second, the
first operation is performed. If it is not, the second operator is compared to
the third, etc. When the end of the expression is reached, all of the remaining
operations are performed in the reverse order.

16

3.2 Symbolic expressions

A symbolic expression is a rule for computing a single symbolic value represented
as a character string.

The primary symbolic expression may be a string literal, dummy index, un-
subscripted parameter, subscripted parameter, built-in function reference, con-
ditional symbolic expression, or another symbolic expression enclosed in paren-
theses.

It is also allowed to use a numeric expression as the primary symbolic expres-
sion, in which case the resultant value of the numeric expression is automatically
converted to the symbolic type.

Examples

’May 2003’ (string literal)
j (dummy index)
p (unsubscripted parameter)
s[’abc’,j+1] (subscripted parameter)
substr(name[i],k+1,3) (function reference)
if i in I then s[i,j] else t[i+1] (conditional expression)
((10 * b[i,j]) & ’.bis’) (parenthesized expression)

More general symbolic expressions containing two or more primary symbolic
expressions may be constructed by using the concatenation operator.

Examples

’abc[’ & i & ’,’ & j & ’]’

"from " & city[i] & " to " & city[j]

The principles of evaluation of symbolic expressions are completely analogous
to the ones given for numeric expressions (see above).

3.2.1 Function references

In MathProg there exist the following built-in functions which may be used in
symbolic expressions:

substr(s, x) substring of s starting from position x
substr(s, x, y) substring of s starting from position x and having

length y
time2str(t, f) converting calendar time to character string (for de-

tails see Subsection B.3, page 56)

The first argument of substr must be a symbolic expression while its second
and optional third arguments must be numeric expressions.

The first argument of time2str must be a numeric expression, and its second
argument must be a symbolic expression.

The resultant value of the symbolic expression, which is a function reference,
is the result of applying the function to its arguments.

17

3.2.2 Symbolic operators

Currently in MathProg there exists the only symbolic operator:

s & t

where s and t are symbolic expressions. This operator means concatenation of
its two symbolic operands, which are character strings.

3.2.3 Hierarchy of operations

The following list shows the hierarchy of operations in symbolic expressions:

Operation Hierarchy
Evaluation of numeric operations 1st-7th
Concatenation (&) 8th
Conditional evaluation (if . . . then . . . else) 7th

This hierarchy has the same meaning as was explained above for numeric
expressions (see Subsection 3.1.10, page 16).

3.3 Indexing expressions and dummy indices

An indexing expression is an auxiliary construction, which specifies a plain set
of n-tuples and introduces dummy indices. It has two syntactic forms:

{ entry1, entry2, . . . , entrym }

{ entry1, entry2, . . . , entrym : predicate }

where entry1, entry2, . . . , entrym are indexing entries, predicate is a logical
expression that specifies an optional predicate (logical condition).

Each indexing entry in the indexing expression has one of the following three
forms:

i in S

(i1, i2, . . . ,in) in S

S

where i1, i2, . . . , in are indices, S is a set expression (discussed in the next
section) that specifies the basic set.

The number of indices in the indexing entry must be the same as the dimen-
sion of the basic set S, i.e. if S consists of 1-tuples, the first form must be used,
and if S consists of n-tuples, where n > 1, the second form must be used.

If the first form of the indexing entry is used, the index i can be a dummy
index only (see below). If the second form is used, the indices i1, i2, . . . , in
can be either dummy indices or some numeric or symbolic expressions, where
at least one index must be a dummy index. The third, reduced form of the
indexing entry has the same effect as if there were i (if S is 1-dimensional) or
i1, i2, . . . , in (if S is n-dimensional) all specified as dummy indices.

18

A dummy index is an auxiliary model object, which acts like an individual
variable. Values assigned to dummy indices are components of n-tuples from
basic sets, i.e. some numeric and symbolic quantities.

For referencing purposes dummy indices can be provided with symbolic
names. However, unlike other model objects (sets, parameters, etc.) dummy
indices need not be explicitly declared. Each undeclared symbolic name being
used in the indexing position of an indexing entry is recognized as the symbolic
name of corresponding dummy index.

Symbolic names of dummy indices are valid only within the scope of the
indexing expression, where the dummy indices were introduced. Beyond the
scope the dummy indices are completely inaccessible, so the same symbolic
names may be used for other purposes, in particular, to represent dummy indices
in other indexing expressions.

The scope of indexing expression, where implicit declarations of dummy
indices are valid, depends on the context, in which the indexing expression is
used:

1. If the indexing expression is used in iterated operator, its scope extends
until the end of the integrand.

2. If the indexing expression is used as a primary set expression, its scope
extends until the end of that indexing expression.

3. If the indexing expression is used to define the subscript domain in dec-
larations of some model objects, its scope extends until the end of the
corresponding statement.

The indexing mechanism implemented by means of indexing expressions is
best explained by some examples discussed below.

Let there be given three sets:

A = {4, 7, 9},

B = {(1, Jan), (1, F eb), (2,Mar), (2, Apr), (3,May), (3, Jun)},

C = {a, b, c},

where A and C consist of 1-tuples (singlets), B consists of 2-tuples (doublets).
Consider the following indexing expression:

{i in A, (j,k) in B, l in C}

where i, j, k, and l are dummy indices.
Although MathProg is not a procedural language, for any indexing expres-

sion an equivalent algorithmic description can be given. In particular, the algo-
rithmic description of the indexing expression above could look like follows:

for all i ∈ A do
for all (j, k) ∈ B do

for all l ∈ C do
action;

19

where the dummy indices i, j, k, l are consecutively assigned corresponding
components of n-tuples from the basic sets A, B, C, and action is some action
that depends on the context, where the indexing expression is used. For exam-
ple, if the action were printing current values of dummy indices, the printout
would look like follows:

i = 4 j = 1 k = Jan l = a
i = 4 j = 1 k = Jan l = b
i = 4 j = 1 k = Jan l = c
i = 4 j = 1 k = Feb l = a
i = 4 j = 1 k = Feb l = b

.
i = 9 j = 3 k = Jun l = b
i = 9 j = 3 k = Jun l = c

Let the example indexing expression be used in the following iterated oper-
ation:

sum{i in A, (j,k) in B, l in C} p[i,j,k,l]

where p is a 4-dimensional numeric parameter or some numeric expression whose
resultant value depends on i, j, k, and l. In this case the action is summation,
so the resultant value of the primary numeric expression is:∑

i∈A,(j,k)∈B,l∈C

(pijkl).

Now let the example indexing expression be used as a primary set expression.
In this case the action is gathering all 4-tuples (quadruplets) of the form (i, j, k, l)
in one set, so the resultant value of such operation is simply the Cartesian
product of the basic sets:

A×B × C = {(i, j, k, l) : i ∈ A, (j, k) ∈ B, l ∈ C}.

Note that in this case the same indexing expression might be written in the
reduced form:

{A, B, C}

because the dummy indices i, j, k, and l are not referenced and therefore their
symbolic names need not be specified.

Finally, let the example indexing expression be used as the subscript domain
in the declaration of a 4-dimensional model object, say, a numeric parameter:

param p{i in A, (j,k) in B, l in C} . . . ;

In this case the action is generating the parameter members, where each member
has the form p[i, j, k, l].

As was said above, some indices in the second form of indexing entries may be
numeric or symbolic expressions, not only dummy indices. In this case resultant

20

values of such expressions play role of some logical conditions to select only that
n-tuples from the Cartesian product of basic sets that satisfy these conditions.

Consider, for example, the following indexing expression:

{i in A, (i-1,k) in B, l in C}

where i, k, l are dummy indices, and i-1 is a numeric expression. The algo-
rithmic decsription of this indexing expression is the following:

for all i ∈ A do
for all (j, k) ∈ B and j = i− 1 do

for all l ∈ C do
action;

Thus, if this indexing expression were used as a primary set expression, the
resultant set would be the following:

{(4,May, a), (4,May, b), (4,May, c), (4, Jun, a), (4, Jun, b), (4, Jun, c)}.

Should note that in this case the resultant set consists of 3-tuples, not of 4-tuples,
because in the indexing expression there is no dummy index that corresponds
to the first component of 2-tuples from the set B.

The general rule is: the number of components of n-tuples defined by an
indexing expression is the same as the number of dummy indices in that ex-
pression, where the correspondence between dummy indices and components
on n-tuples in the resultant set is positional, i.e. the first dummy index cor-
responds to the first component, the second dummy index corresponds to the
second component, etc.

In some cases it is needed to select a subset from the Cartesian product of
some sets. This may be attained by using an optional logical predicate, which
is specified in the indexing expression.

Consider, for example, the following indexing expression:

{i in A, (j,k) in B, l in C: i <= 5 and k <> ’Mar’}

where the logical expression following the colon is a predicate. The algorithmic
description of this indexing expression is the following:

for all i ∈ A do
for all (j, k) ∈ B do

for all l ∈ C do
if i ≤ 5 and l 6= ‘Mar′ then

action;

Thus, if this indexing expression were used as a primary set expression, the
resultant set would be the following:

{(4, 1, Jan, a), (4, 1, Feb, a), (4, 2, Apr, a), . . . , (4, 3, Jun, c)}.

If no predicate is specified in the indexing expression, one, which takes on
the value true, is assumed.

21

3.4 Set expressions

A set expression is a rule for computing an elemental set, i.e. a collection of
n-tuples, where components of n-tuples are numeric and symbolic quantities.

The primary set expression may be a literal set, unsubscripted set, sub-
scripted set, “arithmetic” set, indexing expression, iterated set expression, con-
ditional set expression, or another set expression enclosed in parentheses.

Examples

{(123,’aa’), (i,’bb’), (j-1,’cc’)} (literal set)
I (unsubscripted set)
S[i-1,j+1] (subscripted set)
1..t-1 by 2 (“arithmetic” set)
{t in 1..T, (t+1,j) in S: (t,j) in F} (indexing expression)
setof{i in I, j in J}(i+1,j-1) (iterated expression)
if i < j then S[i] else F diff S[j] (conditional expression)
(1..10 union 21..30) (parenthesized expression)

More general set expressions containing two or more primary set expressions
may be constructed by using certain set operators.

Examples

(A union B) inter (I cross J)

1..10 cross (if i < j then {’a’, ’b’, ’c’} else {’d’, ’e’, ’f’})

3.4.1 Literal sets

A literal set is a primary set expression, which has the following two syntactic
forms:

{e1, e2, . . . , em}

{(e11, . . . , e1n), (e21, . . . , e2n), . . . , (em1, . . . , emn)}

where e1, . . . , em, e11, . . . , emn are numeric or symbolic expressions.
If the first form is used, the resultant set consists of 1-tuples (singlets) enu-

merated within the curly braces. It is allowed to specify an empty set as { },
which has no 1-tuples. If the second form is used, the resultant set consists of
n-tuples enumerated within the curly braces, where a particular n-tuple consists
of corresponding components enumerated within the parentheses. All n-tuples
must have the same number of components.

3.4.2 Unsubscripted sets

If the primary set expression is an unsubscripted set (which must be 0-dimen-
sional), the resultant set is an elemental set associated with the corresponding
set object.

22

3.4.3 Subscripted sets

The primary set expression, which refers to a subscripted set, has the following
syntactic form:

name[i1, i2, . . . , in]

where name is the symbolic name of the set object, i1, i2, . . . , in are subscripts.
Each subscript must be a numeric or symbolic expression. The number of

subscripts in the subscript list must be the same as the dimension of the set
object with which the subscript list is associated.

Actual values of subscript expressions are used to identify a particular mem-
ber of the set object that determines the resultant set.

3.4.4 “Arithmetic” sets

The primary set expression, which is an “arithmetic” set, has the following two
syntactic forms:

t0 .. t1 by δt

t0 .. t1

where t0, t1, and δt are numeric expressions (the value of δt must not be zero).
The second form is equivalent to the first form, where δt = 1.

If δt > 0, the resultant set is determined as follows:

{t : ∃k ∈ Z(t = t0 + kδt, t0 ≤ t ≤ t1)}.

Otherwise, if δt < 0, the resultant set is determined as follows:

{t : ∃k ∈ Z(t = t0 + kδt, t1 ≤ t ≤ t0)}.

3.4.5 Indexing expressions

If the primary set expression is an indexing expression, the resultant set is
determined as described above in Subsection 3.3, page 18.

3.4.6 Iterated expressions

An iterated set expression is a primary set expression, which has the following
syntactic form:

setof indexing-expression integrand

where indexing-expression is an indexing expression, which introduces dummy
indices and controls iterating, integrand is either a single numeric or symbolic
expression or a list of numeric and symbolic expressions separated by commae
and enclosed in parentheses.

If the integrand is a single numeric or symbolic expression, the resultant set
consists of 1-tuples and is determined as follows:

{x : (i1, . . . , in) ∈ ∆},

23

where x is a value of the integrand, i1, . . . , in are dummy indices introduced
in the indexing expression, ∆ is the domain, a set of n-tuples specified by the
indexing expression, which defines particular values assigned to the dummy
indices on performing the iterated operation.

If the integrand is a list containing m numeric and symbolic expressions, the
resultant set consists of m-tuples and is determined as follows:

{(x1, . . . , xm) : (i1, . . . , in) ∈ ∆},

where x1, . . . , xm are values of the expressions in the integrand list, i1, . . . , in
and ∆ have the same meaning as above.

3.4.7 Conditional expressions

A conditional set expression is a primary set expression that has the following
syntactic form:

if b then X else Y

where b is an logical expression, X and Y are set expressions, which must define
sets of the same dimension.

The resultant value of the conditional expression depends on the value of
the logical expression that follows the keyword if. If it takes on the value true,
the resultant set is the value of the expression that follows the keyword then.
Otherwise, if the logical expression takes on the value false, the resultant set is
the value of the expression that follows the keyword else.

3.4.8 Parenthesized expressions

Any set expression may be enclosed in parentheses that syntactically makes it
a primary set expression.

Parentheses may be used in set expressions, as in algebra, to specify the
desired order in which operations are to be performed. Where parentheses are
used, the expression within the parentheses is evaluated before the resultant
value is used.

The resultant value of the parenthesized expression is the same as the value
of the expression enclosed within parentheses.

3.4.9 Set operators

In MathProg there exist the following set operators, which may be used in set
expressions:

X union Y union X ∪ Y
X diff Y difference X\Y
X symdiff Y symmetric difference X ⊕ Y
X inter Y intersection X ∩ Y
X cross Y cross (Cartesian) product X × Y

24

where X and Y are set expressions, which must define sets of the identical
dimension (except the Cartesian product).

If the expression includes more than one set operator, all operators are per-
formed from left to right according to the hierarchy of operations (see below).

The resultant value of the expression, which contains set operators, is the
result of applying the operators to their operands.

The dimension of the resultant set, i.e. the dimension of n-tuples, of which
the resultant set consists of, is the same as the dimension of the operands, except
the Cartesian product, where the dimension of the resultant set is the sum of
the dimensions of its operands.

3.4.10 Hierarchy of operations

The following list shows the hierarchy of operations in set expressions:

Operation Hierarchy
Evaluation of numeric operations 1st-7th
Evaluation of symbolic operations 8th-9th
Evaluation of iterated or “arithmetic” set (setof, ..) 10th
Cartesian product (cross) 11th
Intersection (inter) 12th
Union and difference (union, diff, symdiff) 13th
Conditional evaluation (if . . . then . . . else) 14th

This hierarchy has the same meaning as was explained above for numeric
expressions (see Subsection 3.1.10, page 16).

3.5 Logical expressions

A logical expression is a rule for computing a single logical value, which can be
either true or false.

The primary logical expression may be a numeric expression, relational ex-
pression, iterated logical expression, or another logical expression enclosed in
parentheses.

Examples

i+1 (numeric expression)
a[i,j] < 1.5 (relational expression)
s[i+1,j-1] <> ’Mar’ (relational expression)
(i+1,’Jan’) not in I cross J (relational expression)
S union T within A[i] inter B[j] (relational expression)
forall{i in I, j in J} a[i,j] < .5 * b (iterated expression)
(a[i,j] < 1.5 or b[i] >= a[i,j]) (parenthesized expression)

More general logical expressions containing two or more primary logical ex-
pressions may be constructed by using certain logical operators.

25

Examples

not (a[i,j] < 1.5 or b[i] >= a[i,j]) and (i,j) in S

(i,j) in S or (i,j) not in T diff U

3.5.1 Numeric expressions

The resultant value of the primary logical expression, which is a numeric ex-
pression, is true, if the resultant value of the numeric expression is non-zero.
Otherwise the resultant value of the logical expression is false.

3.5.2 Relational operators

In MathProg there exist the following relational operators, which may be used
in logical expressions:

x < y test on x < y
x <= y test on x ≤ y
x = y, x == y test on x = y
x >= y test on x ≥ y
x > y test on x > y
x <> y, x != y test on x 6= y
x in Y test on x ∈ Y
(x1,. . . ,xn) in Y test on (x1, . . . , xn) ∈ Y
x not in Y , x !in Y test on x 6∈ Y
(x1,. . . ,xn) not in Y , (x1,. . . ,xn) !in Y test on (x1, . . . , xn) 6∈ Y
X within Y test on X ⊆ Y
X not within Y , X !within Y test on X 6⊆ Y

where x, x1, . . . , xn, y are numeric or symbolic expressions, X and Y are set
expression.

Notes:
1. In the operations in, not in, and !in the number of components in the

first operands must be the same as the dimension of the second operand.
2. In the operations within, not within, and !within both operands must

have identical dimension.
All the relational operators listed above have their conventional mathemat-

ical meaning. The resultant value is true, if corresponding relation is satisfied
for its operands, otherwise false. (Note that symbolic values are ordered lexico-
graphically, and any numeric value precedes any symbolic value.)

3.5.3 Iterated expressions

An iterated logical expression is a primary logical expression, which has the
following syntactic form:

iterated-operator indexing-expression integrand

26

where iterated-operator is the symbolic name of the iterated operator to be per-
formed (see below), indexing-expression is an indexing expression which intro-
duces dummy indices and controls iterating, integrand is a numeric expression
that participates in the operation.

In MathProg there exist two iterated operators, which may be used in logical
expressions:

forall ∀-quantification ∀(i1, . . . , in) ∈ ∆[f(i1, . . . , in)],
exists ∃-quantification ∃(i1, . . . , in) ∈ ∆[f(i1, . . . , in)],

where i1, . . . , in are dummy indices introduced in the indexing expression, ∆ is
the domain, a set of n-tuples specified by the indexing expression which defines
particular values assigned to the dummy indices on performing the iterated
operation, f(i1, . . . , in) is the integrand, a logical expression whose resultant
value depends on the dummy indices.

For ∀-quantification the resultant value of the iterated logical expression is
true, if the value of the integrand is true for all n-tuples contained in the domain,
otherwise false.

For ∃-quantification the resultant value of the iterated logical expression
is false, if the value of the integrand is false for all n-tuples contained in the
domain, otherwise true.

3.5.4 Parenthesized expressions

Any logical expression may be enclosed in parentheses that syntactically makes
it a primary logical expression.

Parentheses may be used in logical expressions, as in algebra, to specify the
desired order in which operations are to be performed. Where parentheses are
used, the expression within the parentheses is evaluated before the resultant
value is used.

The resultant value of the parenthesized expression is the same as the value
of the expression enclosed within parentheses.

3.5.5 Logical operators

In MathProg there exist the following logical operators, which may be used in
logical expressions:

not x, !x negation ¬ x
x and y, x && y conjunction (logical “and”) x & y
x or y, x || y disjunction (logical “or”) x ∨ y

where x and y are logical expressions.
If the expression includes more than one logical operator, all operators are

performed from left to right according to the hierarchy of the operations (see
below). The resultant value of the expression, which contains logical operators,
is the result of applying the operators to their operands.

27

3.5.6 Hierarchy of operations

The following list shows the hierarchy of operations in logical expressions:

Operation Hierarchy
Evaluation of numeric operations 1st-7th
Evaluation of symbolic operations 8th-9th
Evaluation of set operations 10th-14th
Relational operations (<, <=, etc.) 15th
Negation (not, !) 16th
Conjunction (and, &&) 17th
∀- and ∃-quantification (forall, exists) 18th
Disjunction (or, ||) 19th

This hierarchy has the same meaning as was explained above for numeric
expressions (see Subsection 3.1.10, page 16).

3.6 Linear expressions

An linear expression is a rule for computing so called a linear form or simply a
formula, which is a linear (or affine) function of elemental variables.

The primary linear expression may be an unsubscripted variable, subscripted
variable, iterated linear expression, conditional linear expression, or another
linear expression enclosed in parentheses.

It is also allowed to use a numeric expression as the primary linear expression,
in which case the resultant value of the numeric expression is automatically
converted to a formula that includes the constant term only.

Examples

z (unsubscripted variable)
x[i,j] (subscripted variable)
sum{j in J} (a[i] * x[i,j] + 3 * y) (iterated expression)
if i in I then x[i,j] else 1.5 * z + 3 (conditional expression)
(a[i,j] * x[i,j] + y[i-1] + .1) (parenthesized expression)

More general linear expressions containing two or more primary linear ex-
pressions may be constructed by using certain arithmetic operators.

Examples

2 * x[i-1,j+1] + 3.5 * y[k] + .5 * z

(- x[i,j] + 3.5 * y[k]) / sum{t in T} abs(d[i,j,t])

3.6.1 Unsubscripted variables

If the primary linear expression is an unsubscripted variable (which must be
0-dimensional), the resultant formula is that unsubscripted variable.

28

3.6.2 Subscripted variables

The primary linear expression, which refers to a subscripted variable, has the
following syntactic form:

name[i1, i2, . . . , in]

where name is the symbolic name of the model variable, i1, i2, . . . , in are
subscripts.

Each subscript must be a numeric or symbolic expression. The number of
subscripts in the subscript list must be the same as the dimension of the model
variable with which the subscript list is associated.

Actual values of the subscript expressions are used to identify a particular
member of the model variable that determines the resultant formula, which is
an elemental variable associated with corresponding member.

3.6.3 Iterated expressions

An iterated linear expression is a primary linear expression, which has the fol-
lowing syntactic form:

sum indexing-expression integrand

where indexing-expression is an indexing expression, which introduces dummy
indices and controls iterating, integrand is a linear expression that participates
in the operation.

The iterated linear expression is evaluated exactly in the same way as the
iterated numeric expression (see Subection 3.1.6, page 14) with exception that
the integrand participated in the summation is a formula, not a numeric value.

3.6.4 Conditional expressions

A conditional linear expression is a primary linear expression, which has one of
the following two syntactic forms:

if b then f else g

if b then f

where b is an logical expression, f and g are linear expressions.
The conditional linear expression is evaluated exactly in the same way as the

conditional numeric expression (see Subsection 3.1.7, page 15) with exception
that operands participated in the operation are formulae, not numeric values.

3.6.5 Parenthesized expressions

Any linear expression may be enclosed in parentheses that syntactically makes
it a primary linear expression.

Parentheses may be used in linear expressions, as in algebra, to specify the
desired order in which operations are to be performed. Where parentheses are

29

used, the expression within the parentheses is evaluated before the resultant
formula is used.

The resultant value of the parenthesized expression is the same as the value
of the expression enclosed within parentheses.

3.6.6 Arithmetic operators

In MathProg there exists the following arithmetic operators, which may be used
in linear expressions:

+ f unary plus
- f unary minus
f + g addition
f - g subtraction
x * f , f * x multiplication
f / x division

where f and g are linear expressions, x is a numeric expression (more precisely,
a linear expression containing only the constant term).

If the expression includes more than one arithmetic operator, all operators
are performed from left to right according to the hierarchy of operations (see
below). The resultant value of the expression, which contains arithmetic oper-
ators, is the result of applying the operators to their operands.

3.6.7 Hierarchy of operations

The hierarchy of arithmetic operations used in linear expressions is the same as
for numeric expressions (see Subsection 3.1.10, page 16).

30

4 Statements

Statements are basic units of the model description. In MathProg all state-
ments are divided into two categories: declaration statements and functional
statements.

Declaration statements (set statement, parameter statement, variable state-
ment, constraint statement, and objective statement) are used to declare model
objects of certain kinds and define certain properties of such objects.

Functional statements (solve statement, check statement, display statement,
printf statement, loop statement) are intended for performing some specific
actions.

Note that declaration statements may follow in arbitrary order, which does
not affect the result of translation. However, any model object must be declared
before it is referenced in other statements.

4.1 Set statement

set name alias domain , attrib , . . . , attrib ;

Where: name is a symbolic name of the set;

alias is an optional string literal, which specifies an alias of the
set;

domain is an optional indexing expression, which specifies a sub-
script domain of the set;

attrib, . . . , attrib are optional attributes of the set. (Commae
preceding attributes may be omitted.)

Optional attributes:

dimen n specifies the dimension of n-tuples, which the set consists of;

within expression
specifies a superset which restricts the set or all its members (el-
emental sets) to be within that superset;

:= expression
specifies an elemental set assigned to the set or its members;

default expression
specifies an elemental set assigned to the set or its members when-
ever no appropriate data are available in the data section.

31

Examples

set V;

set E within V cross V;

set step{s in 1..maxiter} dimen 2 := if s = 1 then E else

step[s-1] union setof{k in V, (i,k) in step[s-1], (k,j)

in step[s-1]}(i,j);

set A{i in I, j in J}, within B[i+1] cross C[j-1], within

D diff E, default {(’abc’,123), (321,’cba’)};

The set statement declares a set. If the subscript domain is not specified,
the set is a simple set, otherwise it is an array of elemental sets.

The dimen attribute specifies the dimension of n-tuples, which the set (if it
is a simple set) or its members (if the set is an array of elemental sets) consist
of, where n must be unsigned integer from 1 to 20. At most one dimen at-
tribute can be specified. If the dimen attribute is not specified, the dimension of
n-tuples is implicitly determined by other attributes (for example, if there is a
set expression that follows := or the keyword default, the dimension of n-tuples
of corresponding elemental set is used). If no dimension information is available,
dimen 1 is assumed.

The within attribute specifies a set expression whose resultant value is a
superset used to restrict the set (if it is a simple set) or its members (if the set
is an array of elemental sets) to be within that superset. Arbitrary number of
within attributes may be specified in the same set statement.

The assign (:=) attribute specifies a set expression used to evaluate elemental
set(s) assigned to the set (if it is a simple set) or its members (if the set is an
array of elemental sets). If the assign attribute is specified, the set is computable
and therefore needs no data to be provided in the data section. If the assign
attribute is not specified, the set must be provided with data in the data section.
At most one assign or default attribute can be specified for the same set.

The default attribute specifies a set expression used to evaluate elemental
set(s) assigned to the set (if it is a simple set) or its members (if the set is an
array of elemental sets) whenever no appropriate data are available in the data
section. If neither assign nor default attribute is specified, missing data will
cause an error.

4.2 Parameter statement

param name alias domain , attrib , . . . , attrib ;

Where: name is a symbolic name of the parameter;

alias is an optional string literal, which specifies an alias of the
parameter;

32

domain is an optional indexing expression, which specifies a sub-
script domain of the parameter;

attrib, . . . , attrib are optional attributes of the parameter. (Com-
mae preceding attributes may be omitted.)

Optional attributes:

integer specifies that the parameter is integer;

binary specifies that the parameter is binary;

symbolic specifies that the parameter is symbolic;

relation expression
(where relation is one of: <, <=, =, ==, >=, >, <>, !=)
specifies a condition that restricts the parameter or its members
to satisfy that condition;

in expression
specifies a superset that restricts the parameter or its members to
be in that superset;

:= expression
specifies a value assigned to the parameter or its members;

default expression
specifies a value assigned to the parameter or its members when-
ever no appropriate data are available in the data section.

Examples

param units{raw, prd} >= 0;

param profit{prd, 1..T+1};

param N := 20, integer, >= 0, <= 100;

param comb ’n choose k’ {n in 0..N, k in 0..n} :=

if k = 0 or k = n then 1 else comb[n-1,k-1] + comb[n-1,k];

param p{i in I, j in J}, integer, >= 0, <= i+j,

in A[i] symdiff B[j], in C[i,j], default 0.5 * (i + j);

param month symbolic default ’May’ in {’Mar’, ’Apr’, ’May’};

The parameter statement declares a parameter. If a subscript domain is
not specified, the parameter is a simple (scalar) parameter, otherwise it is a
n-dimensional array.

The type attributes integer, binary, and symbolic qualify the type of
values that can be assigned to the parameter as shown below:

Type attribute Assigned values
(not specified) Any numeric values
integer Only integer numeric values
binary Either 0 or 1
symbolic Any numeric and symbolic values

33

The symbolic attribute cannot be specified along with other type attributes.
Being specified it must precede all other attributes.

The condition attribute specifies an optional condition that restricts values
assigned to the parameter to satisfy that condition. This attribute has the
following syntactic forms:

< v check for x < v
<= v check for x ≤ v
= v, == v check for x = v
>= v check for x ≥ v
> v check for x ≥ v
<> v, != v check for x 6= v

where x is a value assigned to the parameter, v is the resultant value of a
numeric or symbolic expression specified in the condition attribute. Arbitrary
number of condition attributes can be specified for the same parameter. If a
value being assigned to the parameter during model evaluation violates at least
one of specified conditions, an error is raised. (Note that symbolic values are
ordered lexicographically, and any numeric value precedes any symbolic value.)

The in attribute is similar to the condition attribute and specifies a set ex-
pression whose resultant value is a superset used to restrict numeric or symbolic
values assigned to the parameter to be in that superset. Arbitrary number of
the in attributes can be specified for the same parameter. If a value being
assigned to the parameter during model evaluation is not in at least one of
specified supersets, an error is raised.

The assign (:=) attribute specifies a numeric or symbolic expression used to
compute a value assigned to the parameter (if it is a simple parameter) or its
member (if the parameter is an array). If the assign attribute is specified, the
parameter is computable and therefore needs no data to be provided in the data
section. If the assign attribute is not specified, the parameter must be provided
with data in the data section. At most one assign or default attribute can be
specified for the same parameter.

The default attribute specifies a numeric or symbolic expression used to
compute a value assigned to the parameter or its member whenever no appro-
priate data are available in the data section. If neither assign nor default

attribute is specified, missing data will cause an error.

4.3 Variable statement

var name alias domain , attrib , . . . , attrib ;

Where: name is a symbolic name of the variable;

alias is an optional string literal, which specifies an alias of the
variable;

34

domain is an optional indexing expression, which specifies a sub-
script domain of the variable;

attrib, . . . , attrib are optional attributes of the variable. (Commae
preceding attributes may be omitted.)

Optional attributes:

integer restricts the variable to be integer;

binary restricts the variable to be binary;

>= expression
specifies an lower bound of the variable;

<= expression
specifies an upper bound of the variable;

= expression
specifies a fixed value of the variable;

Examples

var x >= 0;

var y{I,J};

var make{p in prd}, integer, >= commit[p], <= market[p];

var store{raw, 1..T+1} >= 0;

var z{i in I, j in J} >= i+j;

The variable statement declares a variable. If a subscript domain is not spec-
ified, the variable is a simple (scalar) variable, otherwise it is a n-dimensional
array of elemental variables.

Elemental variable(s) associated with the model variable (if it is a simple
variable) or its members (if it is an array) correspond to the variables in the
LP/MIP problem formulation (see Subsection 1.1, page 6). Note that only
elemental variables actually referenced in some constraints and/or objectives
are included in the LP/MIP problem instance to be generated.

The type attributes integer and binary restrict the variable to be integer or
binary, respectively. If no type attribute is specified, the variable is continuous.
If all variables in the model are continuous, the corresponding problem is of LP
class. If there is at least one integer or binary variable, the problem is of MIP
class.

The lower bound (>=) attribute specifies a numeric expression for computing
an lower bound of the variable. At most one lower bound can be specified. By
default all variables (except binary ones) have no lower bound, so if a variable is
required to be non-negative, its zero lower bound should be explicitly specified.

The upper bound (<=) attribute specifies a numeric expression for computing
an upper bound of the variable. At most one upper bound attribute can be
specified.

35

The fixed value (=) attribute specifies a numeric expression for computing a
value, at which the variable is fixed. This attribute cannot be specified along
with the bound attributes.

4.4 Constraint statement

s.t. name alias domain : expression , = expression ;

s.t. name alias domain : expression , <= expression ;

s.t. name alias domain : expression , >= expression ;

s.t. name alias domain : expression , <= expression , <= expression ;

s.t. name alias domain : expression , >= expression , >= expression ;

Where: name is a symbolic name of the constraint;

alias is an optional string literal, which specifies an alias of the
constraint;

domain is an optional indexing expression, which specifies a sub-
script domain of the constraint;

expression is a linear expression used to compute a component of
the constraint. (Commae following expressions may be omitted.)

Note: The keyword s.t. may be written as subject to or as subj to,
or may be omitted at all.

Examples

s.t. r: x + y + z, >= 0, <= 1;

limit{t in 1..T}: sum{j in prd} make[j,t] <= max_prd;

subject to balance{i in raw, t in 1..T}: store[i,t+1] -

store[i,t] - sum{j in prd} units[i,j] * make[j,t];

subject to rlim ’regular-time limit’ {t in time}:

sum{p in prd} pt[p] * rprd[p,t] <= 1.3 * dpp[t] * crews[t];

The constraint statement declares a constraint. If a subscript domain is
not specified, the constraint is a simple (scalar) constraint, otherwise it is a
n-dimensional array of elemental constraints.

Elemental constraint(s) associated with the model constraint (if it is a simple
constraint) or its members (if it is an array) correspond to the linear constraints
in the LP/MIP problem formulation (see Subsection 1.1, page 6).

If the constraint has the form of equality or single inequality, i.e. includes two
expressions, one of which follows the colon and other follows the relation sign
=, <=, or >=, both expressions in the statement can be linear expressions. If the

36

constraint has the form of double inequality, i.e. includes three expressions, the
middle expression can be a linear expression while the leftmost and rightmost
ones can be only numeric expressions.

Generating the model is, roughly speaking, generating its constraints, which
are always evaluated for the entire subscript domain. Evaluation of the con-
straints leads, in turn, to evaluation of other model objects such as sets, param-
eters, and variables.

Constructing an actual linear constraint included in the problem instance,
which (constraint) corresponds to a particular elemental constraint, is performed
as follows.

If the constraint has the form of equality or single inequality, evaluation of
both linear expressions gives two resultant linear forms:

f = a1x1 + a2x2 + . . .+ anxn + a0,
g = b1x1 + a2x2 + . . .+ anxn + b0,

where x1, x2, . . . , xn are elemental variables; a1, a2, . . . , an, b1, b2, . . . , bn are
numeric coefficients; a0 and b0 are constant terms. Then all linear terms of f
and g are carried to the left-hand side, and the constant terms are carried to the
right-hand side, that gives the final elemental constraint in the standard form:

(a1 − b1)x1 + (a2 − b2)x2 + . . .+ (an − bn)xn

=
≤
≥

 b0 − a0.

If the constraint has the form of double inequality, evaluation of the middle
linear expression gives the resultant linear form:

f = a1x1 + a2x2 + . . .+ anxn + a0,

and evaluation of the leftmost and rightmost numeric expressions gives two
numeric values l and u, respectively. Then the constant term of the linear form
is carried to both left-hand and right-handsides that gives the final elemental
constraint in the standard form:

l − a0 ≤ a1x1 + a2x2 + . . .+ anxn ≤ u− a0.

4.5 Objective statement

minimize name alias domain : expression ;

maximize name alias domain : expression ;

Where: name is a symbolic name of the objective;

alias is an optional string literal, which specifies an alias of the
objective;

37

domain is an optional indexing expression, which specifies a sub-
script domain of the objective;

expression is a linear expression used to compute the linear form
of the objective.

Examples

minimize obj: x + 1.5 * (y + z);

maximize total_profit: sum{p in prd} profit[p] * make[p];

The objective statement declares an objective. If a subscript domain is
not specified, the objective is a simple (scalar) objective. Otherwise it is a
n-dimensional array of elemental objectives.

Elemental objective(s) associated with the model objective (if it is a simple
objective) or its members (if it is an array) correspond to general linear con-
straints in the LP/MIP problem formulation (see Subsection 1.1, page 6). How-
ever, unlike constraints the corresponding linear forms are free (unbounded).

Constructing an actual linear constraint included in the problem instance,
which (constraint) corresponds to a particular elemental constraint, is performed
as follows. The linear expression specified in the objective statement is evaluated
that, gives the resultant linear form:

f = a1x1 + a2x2 + . . .+ anxn + a0,

where x1, x2, . . . , xn are elemental variables; a1, a2, . . . , an are numeric coef-
ficients; a0 is the constant term. Then the linear form is used to construct the
final elemental constraint in the standard form:

−∞ < a1x1 + a2x2 + . . .+ anxn + a0 < +∞.

As a rule the model description contains only one objective statement that
defines the objective function used in the problem instance. However, it is
allowed to declare arbitrary number of objectives, in which case the actual
objective function is the first objective encountered in the model description.
Other objectives are also included in the problem instance, but they do not
affect the objective function.

4.6 Solve statement

solve ;

Note: The solve statement is optional and can be used only once. If no
solve statement is used, one is assumed at the end of the model
section.

38

The solve statement causes the model to be solved, that means computing
numeric values of all model variables. This allows using variables in statements
below the solve statement in the same way as if they were numeric parameters.

Note that the variable, constraint, and objective statements cannot be used
below the solve statement, i.e. all principal components of the model must be
declared above the solve statement.

4.7 Check statement

check domain : expression ;

Where: domain is an optional indexing expression, which specifies a sub-
script domain of the check statement;

expression is an logical expression which specifies the logical con-
dition to be checked. (The colon preceding expression may be
omitted.)

Examples

check: x + y <= 1 and x >= 0 and y >= 0;

check sum{i in ORIG} supply[i] = sum{j in DEST} demand[j];

check{i in I, j in 1..10}: S[i,j] in U[i] union V[j];

The check statement allows checking the resultant value of an logical expres-
sion specified in the statement. If the value is false, an error is reported.

If the subscript domain is not specified, the check is performed only once.
Specifying the subscript domain allows performing multiple checks for every
n-tuple in the domain set. In the latter case the logical expression may include
dummy indices introduced in corresponding indexing expression.

4.8 Display statement

display domain : item , . . . , item ;

Where: domain is an optional indexing expression, which specifies a sub-
script domain of the check statement;

item, . . . , item are items to be displayed. (The colon preceding
the first item may be omitted.)

Examples

display: ’x =’, x, ’y =’, y, ’z =’, z;

display sqrt(x ** 2 + y ** 2 + z ** 2);

display{i in I, j in J}: i, j, a[i,j], b[i,j];

39

The display statement evaluates all items specified in the statement and
writes their values to the terminal in plain text format.

If a subscript domain is not specified, items are evaluated and then displayed
only once. Specifying the subscript domain causes items to be evaluated and
displayed for every n-tuple in the domain set. In the latter case items may
include dummy indices introduced in corresponding indexing expression.

An item to be displayed can be a model object (set, parameter, variable,
constraint, objective) or an expression.

If the item is a computable object (i.e. a set or parameter provided with
the assign attribute), the object is evaluated over the entire domain and then
its content (i.e. the content of the object array) is displayed. Otherwise, if the
item is not a computable object, only its current content (i.e. members actually
generated during the model evaluation) is displayed.

If the item is an expression, the expression is evaluated and its resultant
value is displayed.

4.9 Printf statement

printf domain : format , expression , . . . , expression ;

printf domain : format , expression , . . . , expression > filename ;

printf domain : format , expression , . . . , expression >> filename ;

Where: domain is an optional indexing expression, which specifies a sub-
script domain of the printf statement;

format is a symbolic expression whose value specifies a format
control string. (The colon preceding the format expression may
be omitted.)

expression, . . . , expression are zero or more expressions whose val-
ues have to be formatted and printed. Each expression must be
of numeric, symbolic, or logical type.

filename is a symbolic expression whose value specifies a name of
a text file, to which the output is redirected. The flag > means
creating a new empty file while the flag >> means appending the
output to an existing file. If no file name is specified, the output
is written to the terminal.

Examples

printf ’Hello, world!\n’;

printf: "x = %.3f; y = %.3f; z = %.3f\n",

x, y, z > "result.txt";

printf{i in I, j in J}: "flow from %s to %s is %d\n",

i, j, x[i,j] >> result_file & ".txt";

40

printf{i in I} ’total flow from %s is %g\n’,

i, sum{j in J} x[i,j];

printf{k in K} "x[%s] = " & (if x[k] < 0 then "?" else "%g"),

k, x[k];

The printf statement is similar to the display statement, however, it allows
formatting data to be written.

If a subscript domain is not specified, the printf statement is executed only
once. Specifying a subscript domain causes executing the printf statement for
every n-tuple in the domain set. In the latter case the format and expression
may include dummy indices introduced in corresponding indexing expression.

The format control string is a value of the symbolic expression format speci-
fied in the printf statement. It is composed of zero or more directives as follows:
ordinary characters (not %), which are copied unchanged to the output stream,
and conversion specifications, each of which causes evaluating corresponding ex-
pression specified in the printf statement, formatting it, and writing its resultant
value to the output stream.

Conversion specifications that may be used in the format control string are
the following: d, i, f, F, e, E, g, G, and s. These specifications have the same
syntax and semantics as in the C programming language.

4.10 For statement

for domain : statement ;

for domain : { statement . . . statement } ;

Where: domain is an indexing expression which specifies a subscript do-
main of the for statement. (The colon following the indexing ex-
pression may be omitted.)

statement is a statement, which should be executed under control
of the for statement;

statement, . . . , statement is a sequence of statements (enclosed in
curly braces), which should be executed under control of the for
statement.

Note: Only the following statements can be used within the for state-
ment: check, display, printf, and another for.

Examples

for {(i,j) in E: i != j}

{ printf "flow from %s to %s is %g\n", i, j, x[i,j];

check x[i,j] >= 0;

}

41

for {i in 1..n}

{ for {j in 1..n} printf " %s", if x[i,j] then "Q" else ".";

printf("\n");

}

for {1..72} printf("*");

The for statement causes a statement or a sequence of statements specified
as part of the for statement to be executed for every n-tuple in the domain
set. Thus, statements within the for statement may include dummy indices
introduced in corresponding indexing expression.

4.11 Table statement

table name alias IN driver arg . . . arg :

set <- [fld , . . . , fld] , par ~ fld , . . . , par ~ fld ;

table name alias domain OUT driver arg . . . arg :

expr ~ fld , . . . , expr ~ fld ;

Where: name is a symbolic name of the table;

alias is an optional string literal, which specifies an alias of the
table;

domain is an indexing expression, which specifies a subscript do-
main of the (output) table;

IN means reading data from the input table;

OUT means writing data to the output table;

driver is a symbolic expression, which specifies the driver used to
access the table (for details see Section C, page 60);

arg is an optional symbolic expression, which is an argument pass-
ed to the table driver. This symbolic expression must not include
dummy indices specified in the domain;

set is the name of an optional simple set called control set. It can
be omitted along with the delimiter <-;

fld is a field name. Within square brackets at least one field should
be specified. The field name following a parameter name or ex-
pression is optional and can be omitted along with the delimiter
~, in which case the name of corresponding model object is used
as the field name;

par is a symbolic name of a model parameter;

expr is a numeric or symbolic expression.

42

Examples

table data IN "CSV" "data.csv":

S <- [FROM,TO], d~DISTANCE, c~COST;

table result{(f,t) in S} OUT "CSV" "result.csv":

f~FROM, t~TO, x[f,t]~FLOW;

The table statement allows reading data from a table into model objects
such as sets and (non-scalar) parameters as well as writing data from the model
to a table.

4.11.1 Table structure

A data table is an (unordered) set of records, where each record consists of the
same number of fields, and each field is provided with a unique symbolic name
called the field name. For example:

First Second Last
field field . . . field
↓ ↓ ↓

Table header →
First record →
Second record →

. . .

Last record →

FROM TO DISTANCE COST

Seattle New-York 2.5 0.12

Seattle Chicago 1.7 0.08

Seattle Topeka 1.8 0.09

San-Diego New-York 2.5 0.15

San-Diego Chicago 1.8 0.10

San-Diego Topeka 1.4 0.07

4.11.2 Reading data from input table

The input table statement causes reading data from the specified table record
by record.

Once a next record has been read, numeric or symbolic values of fields, whose
names are enclosed in square brackets in the table statement, are gathered into
n-tuple, and if the control set is specified in the table statement, this n-tuple is
added to it. Besides, a numeric or symbolic value of each field associated with a
model parameter is assigned to the parameter member identified by subscripts,
which are components of the n-tuple just read.

For example, the following input table statement:

table data IN "...": S <- [FROM,TO], d~DISTANCE, c~COST;

causes reading values of four fields named FROM, TO, DISTANCE, and COST from
each record of the specified table. Values of fields FROM and TO give a pair (f, t),
which is added to the control set S. The value of field DISTANCE is assigned to
parameter member d[f, t], and the value of field COST is assigned to parameter
member c[f, t].

43

Note that the input table may contain extra fields whose names are not
specified in the table statement, in which case values of these fields on reading
the table are ignored.

4.11.3 Writing data to output table

The output table statement causes writing data to the specified table. Note
that some drivers (namely, CSV and xBASE) destroy the output table before
writing data, i.e. delete all its existing records.

Each n-tuple in the specified domain set generates one record written to the
output table. Values of fields are numeric or symbolic values of corresponding
expressions specified in the table statement. These expressions are evaluated for
each n-tuple in the domain set and, thus, may include dummy indices introduced
in the corresponding indexing expression.

For example, the following output table statement:

table result{(f,t) in S} OUT "...": f~FROM, t~TO, x[f,t]~FLOW;

causes writing records, by one record for each pair (f, t) in set S, to the output
table, where each record consists of three fields named FROM, TO, and FLOW. The
values written to fields FROM and TO are current values of dummy indices f and t,
and the value written to field FLOW is a value of member x[f, t] of corresponding
subscripted parameter or variable.

44

5 Model data

Model data include elemental sets, which are “values” of model sets, and numeric
and symbolic values of model parameters.

In MathProg there are two different ways to saturate model sets and param-
eters with data. One way is simply providing necessary data using the assign
attribute. However, in many cases it is more practical to separate the model
itself and particular data needed for the model. For the latter reason in Math-
Prog there is another way, when the model description is divided into two parts:
model section and data section.

A model section is a main part of the model description that contains dec-
larations of all model objects and is common for all problems based on that
model.

A data section is an optional part of the model description that contains
model data specific for a particular problem.

In MathProg model and data sections can be placed either in one text file
or in two separate text files.

1. If both model and data sections are placed in one file, the file is composed
as follows:

statement;
statement;

. . .
statement;
data;

data block;
data block;

. . .
data block;
end;

2. If the model and data sections are placed in two separate files, the files
are composed as follows:

statement;
statement;

. . .
statement;
end;

Model file

data;

data block;
data block;

. . .
data block;
end;

Data file

Note: If the data section is placed in a separate file, the keyword data

is optional and may be omitted along with the semicolon that
follows it.

45

5.1 Coding data section

The data section is a sequence of data blocks in various formats, which are
discussed in following subsections. The order, in which data blocks follow in the
data section, may be arbitrary, not necessarily the same, in which corresponding
model objects follow in the model section.

The rules of coding the data section are commonly the same as the rules
of coding the model description (see Subsection 2, page 9), i.e. data blocks
are composed from basic lexical units such as symbolic names, numeric and
string literals, keywords, delimiters, and comments. However, for the sake of
convenience and improving readability there is one deviation from the common
rule: if a string literal consists of only alphanumeric characters (including the
underscore character), the signs + and -, and/or the decimal point, it may be
coded without bordering by (single or double) quotes.

All numeric and symbolic material provided in the data section is coded in
the form of numbers and symbols, i.e. unlike the model section no expressions
are allowed in the data section. Nevertheless, the signs + and - can precede
numeric literals to allow coding signed numeric quantities, in which case there
must be no white-space characters between the sign and following numeric literal
(if there is at least one white-space, the sign and following numeric literal are
recognized as two different lexical units).

5.2 Set data block

set name , record , . . . , record ;

set name [symbol , . . . , symbol] , record , . . . , record ;

Where: name is a symbolic name of the set;

symbol, . . . , symbol are subscripts, which specify a particular mem-
ber of the set (if the set is an array, i.e. a set of sets);

record, . . . , record are data records.

Note: Commae preceding data records may be omitted.

Data records:

:= is a non-significant data record, which may be used freely to im-
prove readability;

(slice) specifies a slice;

simple-data specifies set data in the simple format;

: matrix-data
specifies set data in the matrix format;

46

(tr) : matrix-data
specifies set data in the transposed matrix format. (In this case
the colon following the keyword (tr) may be omitted.)

Examples

set month := Jan Feb Mar Apr May Jun;

set month "Jan", "Feb", "Mar", "Apr", "May", "Jun";

set A[3,Mar] := (1,2) (2,3) (4,2) (3,1) (2,2) (4,4) (3,4);

set A[3,’Mar’] := 1 2 2 3 4 2 3 1 2 2 4 4 2 4;

set A[3,’Mar’] : 1 2 3 4 :=

1 - + - -

2 - + + -

3 + - - +

4 - + - + ;

set B := (1,2,3) (1,3,2) (2,3,1) (2,1,3) (1,2,2) (1,1,1) (2,1,1);

set B := (*,*,*) 1 2 3, 1 3 2, 2 3 1, 2 1 3, 1 2 2, 1 1 1, 2 1 1;

set B := (1,*,2) 3 2 (2,*,1) 3 1 (1,2,3) (2,1,3) (1,1,1);

set B := (1,*,*) : 1 2 3 :=

1 + - -

2 - + +

3 - + -

(2,*,*) : 1 2 3 :=

1 + - +

2 - - -

3 + - - ;

(In these examples month is a simple set of singlets, A is a 2-dimensional array
of doublets, and B is a simple set of triplets. Data blocks for the same set are
equivalent in the sense that they specify the same data in different formats.)

The set data block is used to specify a complete elemental set, which is
assigned to a set (if it is a simple set) or one of its members (if the set is an
array of sets).2

Data blocks can be specified only for non-computable sets, i.e. for sets,
which have no assign (:=) attribute in the corresponding set statements.

If the set is a simple set, only its symbolic name should be specified in the
header of the data block. Otherwise, if the set is a n-dimensional array, its
symbolic name should be provided with a complete list of subscripts separated
by commae and enclosed in square brackets to specify a particular member of
the set array. The number of subscripts must be the same as the dimension of
the set array, where each subscript must be a number or symbol.

An elemental set defined in the set data block is coded as a sequence of data
records described below.3

2There is another way to specify data for a simple set along with data for parameters. This
feature is discussed in the next subsection.

3Data record is simply a technical term. It does not mean that data records have any
special formatting.

47

5.2.1 Assign data record

The assign (:=) data record is a non-signficant element. It may be used for
improving readability of data blocks.

5.2.2 Slice data record

The slice data record is a control record, which specifies a slice of the elemental
set defined in the data block. It has the following syntactic form:

(s1 , s2 , . . . , sn)

where s1, s2, . . . , sn are components of the slice.
Each component of the slice can be a number or symbol or the asterisk (*).

The number of components in the slice must be the same as the dimension
of n-tuples in the elemental set to be defined. For instance, if the elemental
set contains 4-tuples (quadruplets), the slice must have four components. The
number of asterisks in the slice is called the slice dimension.

The effect of using slices is the following. If a m-dimensional slice (i.e. a slice
having m asterisks) is specified in the data block, all subsequent data records
must specify tuples of the dimension m. Whenever a m-tuple is encountered,
each asterisk in the slice is replaced by corresponding components of the m-
tuple that gives the resultant n-tuple, which is included in the elemental set to
be defined. For example, if the slice (a, ∗, 1, 2, ∗) is in effect, and 2-tuple (3, b) is
encountered in a subsequent data record, the resultant 5-tuple included in the
elemental set is (a, 3, 1, 2, b).

The slice having no asterisks itself defines a complete n-tuple, which is in-
cluded in the elemental set.

Being once specified the slice effects until either a new slice or the end of
data block is encountered. Note that if no slice is specified in the data block,
one, components of which are all asterisks, is assumed.

5.2.3 Simple data record

The simple data record defines one n-tuple in a simple format and has the
following syntactic form:

t1 , t2 , . . . , tn

where t1, t2, . . . , tn are components of the n-tuple. Each component can be
a number or symbol. Commae between components are optional and may be
omitted.

5.2.4 Matrix data record

The matrix data record defines several 2-tuples (doublets) in a matrix format
and has the following syntactic form:

48

: c1 c2 . . . cn :=

r1 a11 a12 . . . a1n

r2 a21 a22 . . . a2n

.
rm am1 am2 . . . amn

where r1, r2, . . . , rm are numbers and/or symbols corresponding to rows of the
matrix; c1, c2, . . . , cn are numbers and/or symbols corresponding to columns of
the matrix, a11, a12, . . . , amn are matrix elements, which can be either + or -.
(In this data record the delimiter : preceding the column list and the delimiter
:= following the column list cannot be omitted.)

Each element aij of the matrix data block (where 1 ≤ i ≤ m, 1 ≤ j ≤ n)
corresponds to 2-tuple (ri, cj). If aij is the plus sign (+), that 2-tuple (or a
longer n-tuple, if a slice is used) is included in the elemental set. Otherwise, if
aij is the minus sign (-), that 2-tuple is not included in the elemental set.

Since the matrix data record defines 2-tuples, either the elemental set must
consist of 2-tuples or the slice currently used must be 2-dimensional.

5.2.5 Transposed matrix data record

The transposed matrix data record has the following syntactic form:

(tr) : c1 c2 . . . cn :=

r1 a11 a12 . . . a1n

r2 a21 a22 . . . a2n

.
rm am1 am2 . . . amn

(In this case the delimiter : following the keyword (tr) is optional and may be
omitted.)

This data record is completely analogous to the matrix data record (see
above) with only exception that in this case each element aij of the matrix
corresponds to 2-tuple (cj , ri) rather than (ri, cj).

Being once specified the (tr) indicator affects all subsequent data records
until either a slice or the end of data block is encountered.

5.3 Parameter data block

param name , record , . . . , record ;

param name default value , record , . . . , record ;

param : tabbing-data ;

param default value : tabbing-data ;

49

Where: name is a symbolic name of the parameter;

value is an optional default value of the parameter;

record, . . . , record are data records;

tabbing-data specifies parameter data in the tabbing format.

Note: Commae preceding data records may be omitted.

Data records:

:= is a non-significant data record, which may be used freely to im-
prove readability;

[slice] specifies a slice;

plain-data specifies parameter data in the plain format;

: tabular-data
specifies parameter data in the tabular format;

(tr) : tabular-data
specifies set data in the transposed tabular format. (In this case
the colon following the keyword (tr) may be omitted.)

Examples

param T := 4;

param month := 1 ’Jan’ 2 ’Feb’ 3 ’Mar’ 4 ’Apr’ 5 ’May’;

param month := [1] Jan, [2] Feb, [3] Mar, [4] Apr, [5] May;

param day := [Sun] 0, [Mon] 1, [Tue] 2, [Wed] 3, [Thu] 4,

[Fri] 5, [Sat] 6;

param init_stock := iron 7.32 nickel 35.8;

param init_stock [*] iron 7.32, nickel 35.8;

param cost [iron] .025 [nickel] .03;

param value := iron -.1, nickel .02;

param : init_stock cost value :=

iron 7.32 .025 -.1

nickel 35.8 .03 .02 ;

param : raw : init_stock cost value :=

iron 7.32 .025 -.1

nickel 35.8 .03 .02 ;

param demand default 0 (tr)

: FRA DET LAN WIN STL FRE LAF :=

bands 300 . 100 75 . 225 250

coils 500 750 400 250 . 850 500

plate 100 . . 50 200 . 250 ;

50

param trans_cost :=

[*,*,bands]: FRA DET LAN WIN STL FRE LAF :=

GARY 30 10 8 10 11 71 6

CLEV 22 7 10 7 21 82 13

PITT 19 11 12 10 25 83 15

[*,*,coils]: FRA DET LAN WIN STL FRE LAF :=

GARY 39 14 11 14 16 82 8

CLEV 27 9 12 9 26 95 17

PITT 24 14 17 13 28 99 20

[*,*,plate]: FRA DET LAN WIN STL FRE LAF :=

GARY 41 15 12 16 17 86 8

CLEV 29 9 13 9 28 99 18

PITT 26 14 17 13 31 104 20 ;

The parameter data block is used to specify complete data for a parameter
(or parameters, if data are specified in the tabbing format).

Data blocks can be specified only for non-computable parameters, i.e. for
parameters, which have no assign (:=) attribute in the corresponding parameter
statements.

Data defined in the parameter data block are coded as a sequence of data
records described below. Additionally the data block can be provided with
the optional default attribute, which specifies a default numeric or symbolic
value of the parameter (parameters). This default value is assigned to the
parameter or its members, if no appropriate value is defined in the parameter
data block. The default attribute cannot be used, if it is already specified in
the corresponding parameter statement.

5.3.1 Assign data record

The assign (:=) data record is a non-signficant element. It may be used for
improving readability of data blocks.

5.3.2 Slice data record

The slice data record is a control record, which specifies a slice of the parameter
array. It has the following syntactic form:

[s1 , s2 , . . . , sn]

where s1, s2, . . . , sn are components of the slice.
Each component of the slice can be a number or symbol or the asterisk (*).

The number of components in the slice must be the same as the dimension of
the parameter. For instance, if the parameter is a 4-dimensional array, the slice
must have four components. The number of asterisks in the slice is called the
slice dimension.

The effect of using slices is the following. If a m-dimensional slice (i.e. a slice
having m asterisks) is specified in the data block, all subsequent data records

51

must specify subscripts of the parameter members as if the parameter were
m-dimensional, not n-dimensional.

Whenever m subscripts are encountered, each asterisk in the slice is replaced
by corresponding subscript that gives n subscripts, which define the actual pa-
rameter member. For example, if the slice [a, ∗, 1, 2, ∗] is in effect, and subscripts
3 and b are encountered in a subsequent data record, the complete subscript list
used to choose a parameter member is [a, 3, 1, 2, b].

It is allowed to specify a slice having no asterisks. Such slice itself defines a
complete subscript list, in which case the next data record should define only a
single value of corresponding parameter member.

Being once specified the slice effects until either a new slice or the end of
data block is encountered. Note that if no slice is specified in the data block,
one, components of which are all asterisks, is assumed.

5.3.3 Plain data record

The plain data record defines a subscript list and a single value in the plain
format. This record has the following syntactic form:

t1 , t2 , . . . , tn , v

where t1, t2, . . . , tn are subscripts, and v is a value. Each subscript as well as
the value can be a number or symbol. Commae following subscripts are optional
and may be omitted.

In case of 0-dimensional parameter or slice the plain data record has no
subscripts and consists of a single value only.

5.3.4 Tabular data record

The tabular data record defines several values, where each value is provided with
two subscripts. This record has the following syntactic form:

: c1 c2 . . . cn :=

r1 a11 a12 . . . a1n

r2 a21 a22 . . . a2n

.
rm am1 am2 . . . amn

where r1, r2, . . . , rm are numbers and/or symbols corresponding to rows of the
table; c1, c2, . . . , cn are numbers and/or symbols corresponding to columns of
the table, a11, a12, . . . , amn are table elements. Each element can be a number
or symbol or the single decimal point (.). (In this data record the delimiter :

preceding the column list and the delimiter := following the column list cannot
be omitted.)

Each element aij of the tabular data block (1 ≤ i ≤ m, 1 ≤ j ≤ n) defines
two subscripts, where the first subscript is ri, and the second one is cj . These
subscripts are used in conjunction with the current slice to form the complete
subscript list that identifies a particular member of the parameter array. If aij is

52

a number or symbol, this value is assigned to the parameter member. However, if
aij is the single decimal point, the member is assigned a default value specified
either in the parameter data block or in the parameter statement, or, if no
default value is specified, the member remains undefined.

Since the tabular data record provides two subscripts for each value, either
the parameter or the slice currently used must be 2-dimensional.

5.3.5 Transposed tabular data record

The transposed tabular data record has the following syntactic form:

(tr) : c1 c2 . . . cn :=

r1 a11 a12 . . . a1n

r2 a21 a22 . . . a2n

.
rm am1 am2 . . . amn

(In this case the delimiter : following the keyword (tr) is optional and may be
omitted.)

This data record is completely analogous to the tabular data record (see
above) with only exception that the first subscript defined by element aij is cj
while the second one is ri.

Being once specified the (tr) indicator affects all subsequent data records
until either a slice or the end of data block is encountered.

5.3.6 Tabbing data format

The parameter data block in the tabbing format has the following syntactic form:

param default value : s : p1 , p2 , . . . , pk :=

t11 , t12 , . . . , t1n , a11 , a12 , . . . , a1k

t21 , t22 , . . . , t2n , a21 , a22 , . . . , a2k

.
tm1 , tm2 , . . . , tmn , am1 , am2 , . . . , amk ;

Notes:
1. The keyword default may be omitted along with a value following it.
2. Symbolic name s may be omitted along with the colon following it.
3. All comae are optional and may be omitted.

The data block in the tabbing format shown above is exactly equivalent to
the following data blocks for j = 1, 2, . . . , k:

set s := (t11,t12,. . . ,t1n) (t21,t22,. . . ,t2n) . . . (tm1,tm2,. . . ,tmn) ;

param pj default value :=

[t11,t12,. . . ,t1n] a1j [t21,t22,. . . ,t2n] a2j . . . [tm1,tm2,. . . ,tmn] amj ;

53

A Using suffixes

Suffixes can be used to retrieve additional values associated with model vari-
ables, constraints, and objectives.

A suffix consists of a period (.) followed by a non-reserved keyword. For
example, if x is a two-dimensional variable, x[i,j].lb is a numeric value equal
to the lower bound of elemental variable x[i,j], which (value) can be used
everywhere in expressions like a numeric parameter.

For model variables suffixes have the following meaning:

.lb lower bound

.ub upper bound

.status status in the solution:
0 — undefined
1 — basic
2 — non-basic on lower bound
3 — non-basic on upper bound
4 — non-basic free (unbounded) variable
5 — non-basic fixed variable

.val primal value in the solution

.dual dual value (reduced cost) in the solution

For model constraints and objectives suffixes have the following meaning:

.lb lower bound of the linear form

.ub upper bound of the linear form

.status status in the solution:
0 — undefined
1 — non-active
2 — active on lower bound
3 — active on upper bound
4 — active free (unbounded) row
5 — active equality constraint

.val primal value of the linear form in the solution

.dual dual value (reduced cost) of the linear form in the
solution

Note that suffixes .status, .val, and .dual can be used only below the
solve statement.

54

B Date and time functions

by Andrew Makhorin <mao@gnu.org>

and Heinrich Schuchardt <heinrich.schuchardt@gmx.de>

B.1 Obtaining current calendar time

To obtain the current calendar time in MathProg there exists the function
gmtime. It has no arguments and returns the number of seconds elapsed since
00:00:00 on January 1, 1970, Coordinated Universal Time (UTC). For example:

param utc := gmtime();

MathProg has no function to convert UTC time returned by the function
gmtime to local calendar times. Thus, if you need to determine the current local
calendar time, you have to add to the UTC time returned the time offset from
UTC expressed in seconds. For example, the time in Berlin during the winter
is one hour ahead of UTC that corresponds to the time offset +1 hour = +3600
secs, so the current winter calendar time in Berlin may be determined as follows:

param now := gmtime() + 3600;

Similarly, the summer time in Chicago (Central Daylight Time) is five hours be-
hind UTC, so the corresponding current local calendar time may be determined
as follows:

param now := gmtime() - 5 * 3600;

Note that the value returned by gmtime is volatile, i.e. being called several
times this function may return different values.

B.2 Converting character string to calendar time

The function str2time(s, f) converts a character string (timestamp) specified
by its first argument s, which must be a symbolic expression, to the calendar
time suitable for arithmetic calculations. The conversion is controlled by the
specified format string f (the second argument), which also must be a symbolic
expression.

The result of conversion returned by str2time has the same meaning as
values returned by the function gmtime (see Subsection B.1, page 55). Note that
str2time does not correct the calendar time returned for the local timezone,
i.e. being applied to 00:00:00 on January 1, 1970 it always returns 0.

For example, the model statements:

param s, symbolic, := "07/14/98 13:47";

param t := str2time(s, "%m/%d/%y %H:%M");

display t;

produce the following printout:

t = 900424020

where the calendar time printed corresponds to 13:47:00 on July 14, 1998.

55

The format string passed to the function str2time consists of conversion
specifiers and ordinary characters. Each conversion specifier begins with a per-
cent (%) character followed by a letter.

The following conversion specifiers may be used in the format string:

%b The abbreviated month name (case insensitive). At least three first
letters of the month name must appear in the input string.

%d The day of the month as a decimal number (range 1 to 31). Leading
zero is permitted, but not required.

%h The same as %b.

%H The hour as a decimal number, using a 24-hour clock (range 0 to 23).
Leading zero is permitted, but not required.

%m The month as a decimal number (range 1 to 12). Leading zero is
permitted, but not required.

%M The minute as a decimal number (range 0 to 59). Leading zero is
permitted, but not required.

%S The second as a decimal number (range 0 to 60). Leading zero is
permitted, but not required.

%y The year without a century as a decimal number (range 0 to 99).
Leading zero is permitted, but not required. Input values in the
range 0 to 68 are considered as the years 2000 to 2068 while the
values 69 to 99 as the years 1969 to 1999.

%z The offset from GMT in ISO 8601 format.

%% A literal % character.

All other (ordinary) characters in the format string must have a matching
character in the input string to be converted. Exceptions are spaces in the input
string which can match zero or more space characters in the format string.

If some date and/or time component(s) are missing in the format and, there-
fore, in the input string, the function str2time uses their default values corre-
sponding to 00:00:00 on January 1, 1970, that is, the default value of the year
is 1970, the default value of the month is January, etc.

The function str2time is applicable to all calendar times in the range
00:00:00 on January 1, 0001 to 23:59:59 on December 31, 4000 of the Gregorian
calendar.

B.3 Converting calendar time to character string

The function time2str(t, f) converts the calendar time specified by its first
argument t, which must be a numeric expression, to a character string (symbolic
value). The conversion is controlled by the specified format string f (the second
argument), which must be a symbolic expression.

56

The calendar time passed to time2str has the same meaning as values
returned by the function gmtime (see Subsection B.1, page 55). Note that
time2str does not correct the specified calendar time for the local timezone,
i.e. the calendar time 0 always corresponds to 00:00:00 on January 1, 1970.

For example, the model statements:

param s, symbolic, := time2str(gmtime(), "%FT%TZ");

display s;

may produce the following printout:

s = ’2008-12-04T00:23:45Z’

which is a timestamp in the ISO format.
The format string passed to the function time2str consists of conversion

specifiers and ordinary characters. Each conversion specifier begins with a per-
cent (%) character followed by a letter.

The following conversion specifiers may be used in the format string:

%a The abbreviated (2-character) weekday name.

%A The full weekday name.

%b The abbreviated (3-character) month name.

%B The full month name.

%C The century of the year, that is the greatest integer not greater than
the year divided by 100.

%d The day of the month as a decimal number (range 01 to 31).

%D The date using the format %m/%d/%y.

%e The day of the month like with %d, but padded with blank rather
than zero.

%F The date using the format %Y-%m-%d.

%g The year corresponding to the ISO week number, but without the
century (range 00 to 99). This has the same format and value as %y,
except that if the ISO week number (see %V) belongs to the previous
or next year, that year is used instead.

%G The year corresponding to the ISO week number. This has the same
format and value as %Y, except that if the ISO week number (see %V)
belongs to the previous or next year, that year is used instead.

%h The same as %b.

%H The hour as a decimal number, using a 24-hour clock (range 00 to
23).

%I The hour as a decimal number, using a 12-hour clock (range 01 to
12).

57

%j The day of the year as a decimal number (range 001 to 366).

%k The hour as a decimal number, using a 24-hour clock like %H, but
padded with blank rather than zero.

%l The hour as a decimal number, using a 12-hour clock like %I, but
padded with blank rather than zero.

%m The month as a decimal number (range 01 to 12).

%M The minute as a decimal number (range 00 to 59).

%p Either AM or PM, according to the given time value. Midnight is
treated as AM and noon as PM.

%P Either am or pm, according to the given time value. Midnight is
treated as am and noon as pm.

%R The hour and minute in decimal numbers using the format %H:%M.

%S The second as a decimal number (range 00 to 59).

%T The time of day in decimal numbers using the format %H:%M:%S.

%u The day of the week as a decimal number (range 1 to 7), Monday
being 1.

%U The week number of the current year as a decimal number (range
00 to 53), starting with the first Sunday as the first day of the first
week. Days preceding the first Sunday in the year are considered to
be in week 00.

%V The ISO week number as a decimal number (range 01 to 53). ISO
weeks start with Monday and end with Sunday. Week 01 of a year
is the first week which has the majority of its days in that year;
this is equivalent to the week containing January 4. Week 01 of a
year can contain days from the previous year. The week before week
01 of a year is the last week (52 or 53) of the previous year even
if it contains days from the new year. In other word, if 1 January
is Monday, Tuesday, Wednesday or Thursday, it is in week 01; if 1
January is Friday, Saturday or Sunday, it is in week 52 or 53 of the
previous year.

%w The day of the week as a decimal number (range 0 to 6), Sunday
being 0.

%W The week number of the current year as a decimal number (range
00 to 53), starting with the first Monday as the first day of the first
week. Days preceding the first Monday in the year are considered to
be in week 00.

%y The year without a century as a decimal number (range 00 to 99),
that is the year modulo 100.

58

%Y The year as a decimal number, using the Gregorian calendar.

%% A literal % character.

All other (ordinary) characters in the format string are simply copied to the
resultant string.

The first argument (calendar time) passed to the function time2str must
be in the range from −62135596800 to +64092211199 that corresponds to the
period from 00:00:00 on January 1, 0001 to 23:59:59 on December 31, 4000 of
the Gregorian calendar.

59

C Table drivers

by Andrew Makhorin <mao@gnu.org>

and Heinrich Schuchardt <heinrich.schuchardt@gmx.de>

The table driver is a program module which provides transmitting data be-
tween MathProg model objects and data tables.

Currently the GLPK package has four table drivers:

• built-in CSV table driver;

• built-in xBASE table driver;

• ODBC table driver;

• MySQL table driver.

C.1 CSV table driver

The CSV table driver assumes that the data table is represented in the form of
a plain text file in the CSV (comma-separated values) file format as described
below.

To choose the CSV table driver its name in the table statement should be
specified as "CSV", and the only argument should specify the name of a plain
text file containing the table. For example:

table data IN "CSV" "data.csv": ... ;

The filename suffix may be arbitrary, however, it is recommended to use the
suffix ‘.csv’.

On reading input tables the CSV table driver provides an implicit field named
RECNO, which contains the current record number. This field can be specified
in the input table statement as if there were the actual field having the name
RECNO in the CSV file. For example:

table list IN "CSV" "list.csv": num <- [RECNO], ... ;

CSV format4

The CSV (comma-separated values) format is a plain text file format defined as
follows.

1. Each record is located on a separate line, delimited by a line break. For
example:

aaa,bbb,ccc\n

xxx,yyy,zzz\n

where \n means the control character LF (0x0A).

4This material is based on the RFC document 4180.

60

2. The last record in the file may or may not have an ending line break. For
example:

aaa,bbb,ccc\n

xxx,yyy,zzz

3. There should be a header line appearing as the first line of the file in
the same format as normal record lines. This header should contain names
corresponding to the fields in the file. The number of field names in the header
line should be the same as the number of fields in the records of the file. For
example:

name1,name2,name3\n

aaa,bbb,ccc\n

xxx,yyy,zzz\n

4. Within the header and each record there may be one or more fields
separated by commas. Each line should contain the same number of fields
throughout the file. Spaces are considered as part of a field and therefore not
ignored. The last field in the record should not be followed by a comma. For
example:

aaa,bbb,ccc\n

5. Fields may or may not be enclosed in double quotes. For example:

"aaa","bbb","ccc"\n

zzz,yyy,xxx\n

6. If a field is enclosed in double quotes, each double quote which is part of
the field should be coded twice. For example:

"aaa","b""bb","ccc"\n

Example

FROM,TO,DISTANCE,COST

Seattle,New-York,2.5,0.12

Seattle,Chicago,1.7,0.08

Seattle,Topeka,1.8,0.09

San-Diego,New-York,2.5,0.15

San-Diego,Chicago,1.8,0.10

San-Diego,Topeka,1.4,0.07

C.2 xBASE table driver

The xBASE table driver assumes that the data table is stored in the .dbf file
format.

To choose the xBASE table driver its name in the table statement should
be specified as "xBASE", and the first argument should specify the name of a
.dbf file containing the table. For the output table there should be the second

61

argument defining the table format in the form "FF...F", where F is either
C(n), which specifies a character field of length n, or N(n[,p]), which specifies
a numeric field of length n and precision p (by default p is 0).

The following is a simple example which illustrates creating and reading a
.dbf file:

table tab1{i in 1..10} OUT "xBASE" "foo.dbf"

"N(5)N(10,4)C(1)C(10)": 2*i+1 ~ B, Uniform(-20,+20) ~ A,

"?" ~ FOO, "[" & i & "]" ~ C;

set S, dimen 4;

table tab2 IN "xBASE" "foo.dbf": S <- [B, C, RECNO, A];

display S;

end;

C.3 ODBC table driver

The ODBC table driver allows connecting to SQL databases using an imple-
mentation of the ODBC interface based on the Call Level Interface (CLI).5

Debian GNU/Linux. Under Debian GNU/Linux the ODBC table driver
uses the iODBC package,6 which should be installed before building the GLPK
package. The installation can be effected with the following command:

sudo apt-get install libiodbc2-dev

Note that on configuring the GLPK package to enable using the iODBC
library the option ‘--enable-odbc’ should be passed to the configure script.

The individual databases must be entered for systemwide usage in
/etc/odbc.ini and /etc/odbcinst.ini. Database connections to be used
by a single user are specified by files in the home directory (.odbc.ini and
.odbcinst.ini).

Microsoft Windows. Under Microsoft Windows the ODBC table driver uses
the Microsoft ODBC library. To enable this feature the symbol:

#define ODBC_DLNAME "odbc32.dll"

should be defined in the GLPK configuration file ‘config.h’.
Data sources can be created via the Administrative Tools from the Control

Panel.

To choose the ODBC table driver its name in the table statement should be
specified as ’ODBC’ or ’iODBC’.

The argument list is specified as follows.

5The corresponding software standard is defined in ISO/IEC 9075-3:2003.
6See <http://www.iodbc.org/>.

62

The first argument is the connection string passed to the ODBC library, for
example:

’DSN=glpk;UID=user;PWD=password’, or
’DRIVER=MySQL;DATABASE=glpkdb;UID=user;PWD=password’.
Different parts of the string are separated by semicolons. Each part consists

of a pair fieldname and value separated by the equal sign. Allowable fieldnames
depend on the ODBC library. Typically the following fieldnames are allowed:

DATABASE database;
DRIVER ODBC driver;
DSN name of a data source;
FILEDSN name of a file data source;
PWD user password;
SERVER database;
UID user name.
The second argument and all following are considered to be SQL statements
SQL statements may be spread over multiple arguments. If the last character

of an argument is a semicolon this indicates the end of a SQL statement.
The arguments of a SQL statement are concatenated separated by space.

The eventual trailing semicolon will be removed.
All but the last SQL statement will be executed directly.
For IN-table the last SQL statement can be a SELECT command start-

ing with the capitalized letters ’SELECT ’. If the string does not start with
’SELECT ’ it is considered to be a table name and a SELECT statement is
automatically generated.

For OUT-table the last SQL statement can contain one or multiple ques-
tion marks. If it contains a question mark it is considered a template for the
write routine. Otherwise the string is considered a table name and an INSERT
template is automatically generated.

The writing routine uses the template with the question marks and replaces
the first question mark by the first output parameter, the second question mark
by the second output parameter and so forth. Then the SQL command is issued.

The following is an example of the output table statement:

table ta { l in LOCATIONS } OUT

’ODBC’

’DSN=glpkdb;UID=glpkuser;PWD=glpkpassword’

’DROP TABLE IF EXISTS result;’

’CREATE TABLE result (ID INT, LOC VARCHAR(255), QUAN DOUBLE);’

’INSERT INTO result ’VALUES (4, ?, ?)’ :

l ~ LOC, quantity[l] ~ QUAN;

Alternatively it could be written as follows:

table ta { l in LOCATIONS } OUT

’ODBC’

’DSN=glpkdb;UID=glpkuser;PWD=glpkpassword’

’DROP TABLE IF EXISTS result;’

63

’CREATE TABLE result (ID INT, LOC VARCHAR(255), QUAN DOUBLE);’

’result’ :

l ~ LOC, quantity[l] ~ QUAN, 4 ~ ID;

Using templates with ‘?’ supports not only INSERT, but also UPDATE,
DELETE, etc. For example:

table ta { l in LOCATIONS } OUT

’ODBC’

’DSN=glpkdb;UID=glpkuser;PWD=glpkpassword’

’UPDATE result SET DATE = ’ & date & ’ WHERE ID = 4;’

’UPDATE result SET QUAN = ? WHERE LOC = ? AND ID = 4’ :

quantity[l], l;

C.4 MySQL table driver

The MySQL table driver allows connecting to MySQL databases.

Debian GNU/Linux. Under Debian GNU/Linux the MySQL table
driver uses the MySQL package,7 which should be installed before building the
GLPK package. The installation can be effected with the following command:

sudo apt-get install libmysqlclient15-dev

Note that on configuring the GLPK package to enable using the MySQL
library the option ‘--enable-mysql’ should be passed to the configure script.

Microsoft Windows. Under Microsoft Windows the MySQL table driver
also uses the MySQL library. To enable this feature the symbol:

#define MYSQL_DLNAME "libmysql.dll"

should be defined in the GLPK configuration file ‘config.h’.

To choose the MySQL table driver its name in the table statement should
be specified as ’MySQL’.

The argument list is specified as follows.
The first argument specifies how to connect the data base in the DSN style,

for example:
’Database=glpk;UID=glpk;PWD=gnu’.
Different parts of the string are separated by semicolons. Each part con-

sists of a pair fieldname and value separated by the equal sign. The following
fieldnames are allowed:

Server server running the database (defaulting to localhost);
Database name of the database;
UID user name;

7For download development files see <http://dev.mysql.com/downloads/mysql/>.

64

PWD user password;
Port port used by the server (defaulting to 3306).
The second argument and all following are considered to be SQL statements
SQL statements may be spread over multiple arguments. If the last character

of an argument is a semicolon this indicates the end of a SQL statement.
The arguments of a SQL statement are concatenated separated by space.

The eventual trailing semicolon will be removed.
All but the last SQL statement will be executed directly.
For IN-table the last SQL statement can be a SELECT command start-

ing with the capitalized letters ’SELECT ’. If the string does not start with
’SELECT ’ it is considered to be a table name and a SELECT statement is
automatically generated.

For OUT-table the last SQL statement can contain one or multiple ques-
tion marks. If it contains a question mark it is considered a template for the
write routine. Otherwise the string is considered a table name and an INSERT
template is automatically generated.

The writing routine uses the template with the question marks and replaces
the first question mark by the first output parameter, the second question mark
by the second output parameter and so forth. Then the SQL command is issued.

The following is an example of the output table statement:

table ta { l in LOCATIONS } OUT

’MySQL’

’Database=glpkdb;UID=glpkuser;PWD=glpkpassword’

’DROP TABLE IF EXISTS result;’

’CREATE TABLE result (ID INT, LOC VARCHAR(255), QUAN DOUBLE);’

’INSERT INTO result VALUES (4, ?, ?)’ :

l ~ LOC, quantity[l] ~ QUAN;

Alternatively it could be written as follows:

table ta { l in LOCATIONS } OUT

’MySQL’

’Database=glpkdb;UID=glpkuser;PWD=glpkpassword’

’DROP TABLE IF EXISTS result;’

’CREATE TABLE result (ID INT, LOC VARCHAR(255), QUAN DOUBLE);’

’result’ :

l ~ LOC, quantity[l] ~ QUAN, 4 ~ ID;

Using templates with ‘?’ supports not only INSERT, but also UPDATE,
DELETE, etc. For example:

table ta { l in LOCATIONS } OUT

’MySQL’

’Database=glpkdb;UID=glpkuser;PWD=glpkpassword’

’UPDATE result SET DATE = ’ & date & ’ WHERE ID = 4;’

’UPDATE result SET QUAN = ? WHERE LOC = ? AND ID = 4’ :

quantity[l], l;

65

D Solving models with glpsol

The GLPK package8 includes the program glpsol, which is a stand-alone
LP/MIP solver. This program can be launched from the command line or from
the shell to solve models written in the GNU MathProg modeling language.

In order to tell the solver that the input file contains a model description,
you need to specify the option --model in the command line. For example:

glpsol --model foo.mod

Sometimes it is necessary to use the data section placed in a separate file,
in which case you may use the following command:

glpsol --model foo.mod --data foo.dat

Note that if the model file also contains the data section, that section is ignored.
If the model description contains some display and/or printf statements, by

default the output is sent to the terminal. In order to redirect the output to a
file you may use the following command:

glpsol --model foo.mod --display foo.out

If you need to look at the problem, which has been generated by the model
translator, you may use the option --wlp as follows:

glpsol --model foo.mod --wlp foo.lp

in which case the problem data is written to file foo.lp in CPLEX LP format
suitable for visual analysis.

Sometimes it is needed merely to check the model description not solving the
generated problem instance. In this case you may specify the option --check,
for example:

glpsol --check --model foo.mod --wlp foo.lp

In order to write a numeric solution obtained by the solver you may use the
following command:

glpsol --model foo.mod --output foo.sol

in which case the solution is written to file foo.sol in a plain text format.
The complete list of the glpsol options can be found in the reference manual

included in the GLPK distribution.

8http://www.gnu.org/software/glpk/

66

E Example model description

E.1 Model description written in MathProg

Below here is a complete example of the model description written in the GNU
MathProg modeling language.

A TRANSPORTATION PROBLEM

#

This problem finds a least cost shipping schedule that meets

requirements at markets and supplies at factories.

#

References:

Dantzig G B, "Linear Programming and Extensions."

Princeton University Press, Princeton, New Jersey, 1963,

Chapter 3-3.

set I;

/* canning plants */

set J;

/* markets */

param a{i in I};

/* capacity of plant i in cases */

param b{j in J};

/* demand at market j in cases */

param d{i in I, j in J};

/* distance in thousands of miles */

param f;

/* freight in dollars per case per thousand miles */

param c{i in I, j in J} := f * d[i,j] / 1000;

/* transport cost in thousands of dollars per case */

var x{i in I, j in J} >= 0;

/* shipment quantities in cases */

minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];

/* total transportation costs in thousands of dollars */

s.t. supply{i in I}: sum{j in J} x[i,j] <= a[i];

/* observe supply limit at plant i */

s.t. demand{j in J}: sum{i in I} x[i,j] >= b[j];

/* satisfy demand at market j */

67

data;

set I := Seattle San-Diego;

set J := New-York Chicago Topeka;

param a := Seattle 350

San-Diego 600;

param b := New-York 325

Chicago 300

Topeka 275;

param d : New-York Chicago Topeka :=

Seattle 2.5 1.7 1.8

San-Diego 2.5 1.8 1.4 ;

param f := 90;

end;

E.2 Generated LP problem instance

Below here is the result of the translation of the example model produced by
the solver glpsol and written in CPLEX LP format with the option --wlp.

* Problem: transp *\

Minimize

cost: + 0.225 x(Seattle,New~York) + 0.153 x(Seattle,Chicago)

+ 0.162 x(Seattle,Topeka) + 0.225 x(San~Diego,New~York)

+ 0.162 x(San~Diego,Chicago) + 0.126 x(San~Diego,Topeka)

Subject To

supply(Seattle): + x(Seattle,New~York) + x(Seattle,Chicago)

+ x(Seattle,Topeka) <= 350

supply(San~Diego): + x(San~Diego,New~York) + x(San~Diego,Chicago)

+ x(San~Diego,Topeka) <= 600

demand(New~York): + x(Seattle,New~York) + x(San~Diego,New~York) >= 325

demand(Chicago): + x(Seattle,Chicago) + x(San~Diego,Chicago) >= 300

demand(Topeka): + x(Seattle,Topeka) + x(San~Diego,Topeka) >= 275

End

E.3 Optimal LP solution

Below here is the optimal solution of the generated LP problem instance found
by the solver glpsol and written in plain text format with the option --output.

68

Problem: transp

Rows: 6

Columns: 6

Non-zeros: 18

Status: OPTIMAL

Objective: cost = 153.675 (MINimum)

No. Row name St Activity Lower bound Upper bound Marginal

--- ------------ -- ------------ ------------ ------------ ------------

1 cost B 153.675

2 supply[Seattle]

B 300 350

3 supply[San-Diego]

NU 600 600 < eps

4 demand[New-York]

NL 325 325 0.225

5 demand[Chicago]

NL 300 300 0.153

6 demand[Topeka]

NL 275 275 0.126

No. Column name St Activity Lower bound Upper bound Marginal

--- ------------ -- ------------ ------------ ------------ ------------

1 x[Seattle,New-York]

B 0 0

2 x[Seattle,Chicago]

B 300 0

3 x[Seattle,Topeka]

NL 0 0 0.036

4 x[San-Diego,New-York]

B 325 0

5 x[San-Diego,Chicago]

NL 0 0 0.009

6 x[San-Diego,Topeka]

B 275 0

End of output

69

Acknowledgment

The authors would like to thank the following people, who kindly read, com-
mented, and corrected the draft of this document:

Juan Carlos Borras <borras@cs.helsinki.fi>

Harley Mackenzie <hjm@bigpond.com>

Robbie Morrison <robbie@actrix.co.nz>

70

	Introduction
	Linear programming problem
	Model objects
	Structure of model description

	Coding model description
	Symbolic names
	Numeric literals
	String literals
	Keywords
	Delimiters
	Comments

	Expressions
	Numeric expressions
	Numeric literals
	Dummy indices
	Unsubscripted parameters
	Subscripted parameters
	Function references
	Iterated expressions
	Conditional expressions
	Parenthesized expressions
	Arithmetic operators
	Hierarchy of operations

	Symbolic expressions
	Function references
	Symbolic operators
	Hierarchy of operations

	Indexing expressions and dummy indices
	Set expressions
	Literal sets
	Unsubscripted sets
	Subscripted sets
	``Arithmetic'' sets
	Indexing expressions
	Iterated expressions
	Conditional expressions
	Parenthesized expressions
	Set operators
	Hierarchy of operations

	Logical expressions
	Numeric expressions
	Relational operators
	Iterated expressions
	Parenthesized expressions
	Logical operators
	Hierarchy of operations

	Linear expressions
	Unsubscripted variables
	Subscripted variables
	Iterated expressions
	Conditional expressions
	Parenthesized expressions
	Arithmetic operators
	Hierarchy of operations

	Statements
	Set statement
	Parameter statement
	Variable statement
	Constraint statement
	Objective statement
	Solve statement
	Check statement
	Display statement
	Printf statement
	For statement
	Table statement
	Table structure
	Reading data from input table
	Writing data to output table

	Model data
	Coding data section
	Set data block
	Assign data record
	Slice data record
	Simple data record
	Matrix data record
	Transposed matrix data record

	Parameter data block
	Assign data record
	Slice data record
	Plain data record
	Tabular data record
	Transposed tabular data record
	Tabbing data format

	Using suffixes
	Date and time functions
	Obtaining current calendar time
	Converting character string to calendar time
	Converting calendar time to character string

	Table drivers
	CSV table driver
	xBASE table driver
	ODBC table driver
	MySQL table driver

	Solving models with glpsol
	Example model description
	Model description written in MathProg
	Generated LP problem instance
	Optimal LP solution

	Acknowledgment

